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Preface 

We have the pleasure of successfully organising “The 2nd International Conference on Applied 

Mathematics in Engineering (ICAME’21)", between 1-3 September 2021 in Burhaniye/Balikesir, 

Turkey. Although it has been planned to be held on site in 2020 (two years after ICAME’18), the 

conference had to be postponed to 2021 and held online due to severe Covid-19 pandemic affected 

our planet.  

The conference provided an ideal academic platform for researchers to present the latest research 

and evolving findings of applied mathematics on engineering, physics, chemistry, biology, and 

statistics. The conference also offered the opportunity of discussing advances in the field of 

applied mathematics, its effect on engineering and real-life problems. Especially, the most current 

applied mathematical problems (i.e. fractional calculus and its real-life applications, operational 

research, mathematical modeling in health science and engineering, optimization and control in 

engineering, non-linear dynamical systems and chaos, optimization and control problems) have 

been discussed via 143 oral presentations given to an audience with over 120 participants from 

27 countries. 

Authors of the high-quality presentations have been invited to present the greatly extended 

versions of their papers to the special issues organized in prestigious journals indexed in 

SCIE/ESCI and/or Scopus, such as Journal of Computational and Applied Mathematics (Elsevier), 

Numerical Algebra, Control and Optimization (AIMS), and An International Journal of Optimization 

and Control: Theories & Applications (IJOCTA). 

This book contains the full-text articles of some of the papers (not submitted to journal special 

issues) presented at ICAME’21. All submissions to this book have been peer-reviewed via a single-

blind reviewing process and the final decision whether to publish the papers has been given by 

the book editors.  

With this opportunity, we would like to thank again to our plenary speakers Albert C. J. Luo 

(Southern Illinois University Edwardsville, USA), Sverre Holm (University of Oslo, Norway), Gerhard-

Wilhelm Weber (Poznan University of Technology, Poland) and Praveen Agarwal (Anand 

International College of Engineering, Jaipur, India); invited speakers Carla Pinto (School of 

Engineering, Polytechnic of Porto, Portugal), Huseyin Merdan (TOBB University of Economy and 

Technology, Turkey) and Amin Jajarmi (Department of Electrical Engineering, University of Bojnord, 

Iran); organizers of the special sessions, authors, as well as the members of the international 

scientific committee and organizing committee for their exceptional cooperation. 

Hope to see you all in the next event of the ICAME conference series in 2023. 

December 2021 

 

Book Editors 

Assoc. Prof. Dr. Firat Evirgen 

Department of Mathematics 

Balikesir University, Turkey 

Assoc. Prof. Dr. Ibrahim Kucukkoc 

Department of Industrial Engineering 

Balikesir University, Turkey 
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Bistatic Detection Performance: Random vs Coordinated Search 

 

Mumtaz Karatas*, Levent Eriskin 

 

Department of Industrial Engineering, National Defence University, Turkish Naval Academy 

34640, Istanbul, Turkey 

mkaratas@dho.edu.tr, leriskin@dho.edu.tr 

 

Abstract 

The problem of assessing the coverage quality of underwater sensor networks for search, detection and 

surveillance is an important research topic both for practitioners and researchers. Among different 

underwater sensor types, multistatic and bistatic sonars are effectively used by navies worldwide for 

protecting maritime zones and friendly units against hostile submerged targets. Such systems consist of 

sources and receivers which need not be collocated. If a multistatic underwater surveillance system is 

composed of single independent source and receiver at different locations, these systems are called 

bistatic sensors. In this study, we consider comparing the performance of random and coordinated 

deployment strategies of bistatic sonobuoys against stationary and mobile targets. To achieve this, using 

underwater acoustic theory, we first model the coverage zone of a bistatic sensor couple as a group of 

Cassini ovals. Next, using simple analytical geometry, we map the problem to a two-dimensional 

geometric problem. Finally, we approximate the expected coverage area of bistatic sensors by using 

equations derived from this mapping and analyse the relationship between the dimensions of the search 

field and coverage. We also use results from previous work obtained for the coordinated deployment of 

bistatic sensors against mobile targets and compare the results. The results obtained from this work can 

be utilized by decision-makers and practitioners for back-of-the-envelope analysis to estimate the search 

performance of bistatic sensors. 

 

Keywords: Area coverage, bistatic sonar, search theory 

 

1. Introduction 

A monostatic sonar consists of a co-located source and receiver. A bistatic sonar, on the other hand, is 

a variant of the traditional monostatic sonar where the source and receiver are not co-located. A 

multistatic system consists of multiple sources and receivers distributed over the search area. Each 

source-receiver couple is named as a bistatic sonar system. In other words, a bistatic system is a special 

case of a multistatic system which consists of a single source and receiver. The basic operating concept 

of a multistatic sonar sensor network is to emit sound energy from a source into the water and listen for 

the reflected echoes returning across the receivers to detect the targets of interest. 

Multistatic systems have several advantages over monostatic systems. One advantage is the covertness 

of the receive platforms which will make taking countermeasures difficult for the target (Craparo and 

Karatas, 2018; Craparo and Karatas, 2020). In addition, multistatic systems enable multi-angle 

observations and therefore improve tracking accuracy. It also allows multi-platform operations such as 

an airplane deployed receivers with a surface ship or a dipping helicopter source. The main disadvantage 

that multistatic systems possess is the increased system complexity and unusual coverage patterns 

determined by the transmission losses (Craparo et al., 2019; Craparo et al., 2017; Fügenschuh et al., 

2020). 

 
* Corresponding Author 
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Target detection (or area coverage) performance of a monostatic sonar mainly depends on the sensing 

range of the sensor and the distance between the sensor and target. For a bistatic sonar, on the other 

hand, this probability is based on the distance between the source and target as well as the distance 

between the target and receiver. In particular, for a given environmental condition and target type, the 

sensing zone of a bistatic sonar is characterized by a set of distinct ovals named as Cassini ovals (Wang 

et al., 2008). Hence, the problem of developing optimal (or effective) sensor location layouts for bistatic 

sonars is considerably harder than it is for the monostatic sonars.  

In this study our main ambition is to compare the performance of random and coordinated bistatic 

sonobuoy deployment strategies in terms of area coverage (or stationary target detection) and mobile 

target detection. To achieve this, we use simple analytical geometry and acoustic theory to map the 

problem of determining expected area coverage of random deployed sensors to a two-dimensional 

geometric problem. While doing this we use special features of the Cassini ovals that are used to model 

the sensing zone of a bistatic couple. Next, we adopt the results in (Karatas et al., 2018) obtained for 

coordinated bistatic deployment scenarios both for area coverage and mobile target detection. In Section 

2, we provide preliminaries on the concept of bistatic theory. In Section 3 we define our problems and 

derivations for both deployment strategies. Finally, we conclude with a few remarks in Section 4.  

 

2. Preliminaries 

In bistatic sonar systems, detection occurs if the emitted acoustic energy from the source is reflected off 

by the target and this energy generates an echo at the receiver such that it is greater than the receiver’s 

detection threshold. Hence, since the energy travels from the source and target, and from the target to 

the receiver, the detection probability depends on both distances as well as other factors such as 

environmental conditions, receiver sensitivity, false alarm setting. Based on acoustic theory and results 

in (Urick 1983; Washburn and Karatas, 2015) for a bistatic system detection happens if:  

1 2

2R R b    (1) 

where R1 and R2 represent source-target and target-receiver distances (as shown in Figure 1(left)) and b 

is the equivalent monostatic detection range. In other words, the parameter b represents the detection 

range of the bistatic sensor couple when the source and receiver are co-located.   

The inequality (1) defines the interior of the well-known ovals named as “Cassini ovals” which is also 

used for representing the sensing zone of a bistatic couple (Cox, 1989). These distinct ovals are used in 

a variety of applications such as nuclear physics, military, acoustics, and bio-sciences (Karatas, 2013). 

Let d denote the separation distance and a the semi-distance between the source and receiver, i.e. d=2a. 

Then given that the sensors are located at (±a,0) the Cartesian equation of a Cassini oval is 

2 2 2 2 4( ) ( ) ,( , ) .x a y x a y b a b   − + + + =      Then the shape of the Cassini oval categorized by the 

ratio a/b is depicted in Figure 1(right). Note that in the figure we fix b=1 for simplicity. The figure shows 

that when the sensors are co-located, the bistatic sensing zone reduces to a monostatic sensor sensing 

zone and is modelled as a disk of radius b. For a/b=1 the oval becomes a lemniscate of Bernoulli and 

when a/b>1 it comes two disjoint ovals (Willis, 2008). 

 

3. Random and Coordinated Use of Bistatic Sonobuoys 

We now analyse and compare the outcomes of random and coordinated deployment of bistatic 

sonobuoys against stationary and mobile targets. In our analysis we adopt a deterministic sensing model 

such that a target is detected only if it lies within the sensing zone (denoted by C) of the sensors and not 

detected if it is outside of C (Karatas, 2017; Karatas, 2018; Karatas and Eriskin, 2021). We denote the 

area of C as AC.  



2nd International Conference on Applied Mathematics in Engineering (ICAME’21)  

September 1-3, 2021 - Balikesir, Turkey 

 

10 

 

 

 
Figure 1. (left) Bistatic triangle, (right) A family of Cassini ovals for b=1. 

 

3.1. Stationary Target Detection  

Suppose that a source and receiver is deployed in a rectangular region F of area AF with sizes m×n in 

which a stationary target is distributed uniformly. This assumption means that there is no prior 

information on the location of the target in the region. We can simply express the detection probability 

as the ratio area covered by the sensor pair to the area of the region, i.e. AC/AF. Adopting results derived 

in (Karataş and Akman, 2015) we can express the area AC as follows: 

2 2

2 2

2 2

0

4 ( ) , 1

4 ( ) , 1

a b

C
a b

a b

f x dx a b

A

f x dx a b

−

+

+


 


= 









  

  

                                                                                                            (2) 

where 2 2 2 2 4( ) 4f x a x x a b=  − − + . The results in (Karatas et al., 2018) reveal that for a given 

area A and range b, the detection probability is maximized for the area AC obtained for a/b=0. That is, 

the area of the Cassini oval is maximum when the sensors are co-located, i.e., the area is AC=πb2. 

Therefore, for coordinated search the optimal strategy is to co-locate the sensors to achieve maximum 

area coverage and target detection probability. 

 

2

2 2 2 2

2 2 2

2 2 2

2

2 2

2 2 2 2

2 2 2 2

2 2 , 0

1 2 2
2 arcsin ,
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1 2 2

arcsin

1 2 2
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s s s
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m n mn mn m n

s m
s m m s n
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g s
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m mn mn mn m ns






− − + +  


  

− − + + −    
 

= 
  + + −   


 

− + + − − −   + 
 

  (3) 

Now suppose that bistatic sensors are randomly deployed in A. Since the area AC is a function of the 

separation distance d, we first need to derive the expected distance between the sonobuoys. To achieve 

this, we first map the bistatic deployment problem two a geometric problem such that each sensor 

denotes a point in a two-dimensional rectangle of sizes m×n and by using results the given in (Philip, 

2007) we can express the probability distribution of the distance between these two random points as in 

equation (3). In the equation s=d2 and 
2( ) ( ) 2 . ( )g d g d s d d g s=   = . Figure 2 depicts the probability 

density function of distance between a source and receiver couple that are randomly deployed in a square 

field of size 4×4, 5×5, and 6×6. Using this result, we can express the expected separation distance as: 
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2 2 2 2

0 0

E[ ] . ( ). . ( ).

m n m n

d s g s s d g d d
+ +

=  =      (4) 

 
Figure 2. Pdf for the distance for sensors randomly deployed in a field of sizes 4×4, 5×5, and 6×6. 

 

Upon computing E[d], the expected area coverage E[AC] can be computed as: 

 

22 2

0

2 2

4

4

0

4. ( ) 4 . ( ).

bsm n

C C C CE A A g A A g s xs ss x x b

 +
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− − +  += =    (5) 

3.2. Mobile Target Detection  

We now assume that a mobile target moving on a straight line of infinite length transits the area A such 

its trajectory crosses A equiprobably. Using the results in (Karatas et al., 2018) which map the mobile 

target detection with bistatic sensors to a line-set intersection problem, we can define the detection 

probability of a target as eff

C FPd P P=  where eff

CP  and PF represent the effective perimeter of the 

Cassini oval and perimeter of the search area. Below we list the formulas used to calculate the effective 

perimeter of the Cassini oval for a given separation distance and b. 

, 2 2
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The results for show that the effective perimeter takes its maximum value when a/b=1, i.e. when the 

oval is a lemniscate. Hence for coordinated search the optimal policy for detecting a transiting target is 

setting the semi-distance a value equal to b. 
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3.3. Comparison of Random and Coordinated Deployments 

Using the analytic results obtained in previous subsection we now display a comparison of both 

deployment approaches for static and mobile target detection. Figure 3(left) shows a comparison of 

stationary target detection probabilities of the two strategies with respect to different search areas AF 

ranging from 1 unit2 to 50 unit2. Similarly, Figure 3(right) shows the performance of both strategies for 

mobile targets. 

 
 

Figure 3. (left) Detection probability of stationary targets by random and coordinated deployments, 

(right) Detection probability of mobile targets by random and coordinated deployments. 

 

Figures reveal that for both cases the coordinated placement of sensors outperforms the random 

approach in terms of detection probability performance. One important observation is that, for both 

target models the difference between the performance of the two strategies is negligible for small areas, 

e.g. for AF<10 unit2.  This is an expected result considering that small areas yield shorter distances 

between randomly deployed sensors, and hence relatively large coverages. As the area increases, 

coordinated deployment performs almost twice better than the random strategy. 

 

4. Conclusion 

We have considered two deployment strategies for bistatic sensors: random and coordinated. For both 

cases we studied stationary and mobile target models and using analytic geometry, acoustic theory and 

results obtained from previous work, we compared the performance of the two strategies for both target 

models. For the coordinated search, a natural choice for stationary targets is to co-locate the source and 

receiver whereas for transiting targets the optimal choice is to set a/b=1. For the random case we have 

derived analytic results to estimate the coverage of the sensors. In its current form our analysis provides 

a “back of the envelope” type estimate for both cases as a function of the ratio a/b. As a future work, 

the comparison can be carried out for more realistic cases which incorporates the direct blast zone effect 

(Craparo and Karatas, 2015), noise and interference, more realistic gradual cover sensing models.  
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Abstract 

Tsunamis are among the most devastating hazards that can be observed in nature. Observation, sensing, 

recording, and analysis of the tsunami and tsunami-structure interaction parameters are of crucial 

importance for the safety of the coastal zone and communities. These parameters include but are not 

limited to tsunami water surface fluctuations, particle velocities, inundation, runup, sediment deposit, 

their dynamics pressures on structures. Efficient sensing, data recording, and analysis of these 

parameters is critically important for the reconnaissance, assessment, early warning, and avoidance of 

catastrophic consequences of tsunamis. One of the most successful sensing algorithms of the big data 

era is the compressive sensing technique (CS), which can outperform classical sampling methodologies 

by using far fewer samples while achieving exact recovery (Candes et al., 2006a, 2006b). In this paper, 

we investigate the possible usage of the CS for the effective measurement and reconstruction of the 

tsunami parameters of water surface fluctuation, particle velocities, and tsunami-induced wave 

pressures. Using the data sets of the Japanese Tohoku Tsunami occurred in 2011 after a major 

earthquake of Mw 9.0 (Koshimura et al., 2015), provided by the USA’s National Oceanic and 

Atmospheric Administration (NOAA)’s Deep-Ocean Assessment and Reporting of Tsunamis (DART) 

portal (NOAA, 2011), we show that CS can be used as an effective tool for the measurement, analysis, 

and reconstruction of the tsunami and tsunami-structure interaction parameters. Although we limit 

ourselves with the reconstruction of water surface fluctuations and tsunami-induced dynamic pressures 

(Goda, 2010), the CS can be applied for monitoring of the tsunami parameters in more general settings 

including the effects of vortices and shorter waves (Bayındır, 2019, Bayındır et al., 2021). We discuss 

our findings and comment on their possible applicability and usage. 

 

Keywords: Tsunamis, tsunami-structure interaction, compressive sensing 

 

1. Introduction 

On the 11th of March, 2011 a major earthquake with Mw 9.0 hit the Honshu region of the Japan trench. 

After the earthquake, a tsunami wave reached the shore in approximately 30 minutes. This 2011 Tohoku 

earthquake and tsunami event, which was the largest earthquake recorded in Japan, caused the killing 

of more than 18000 people and great volumes of overtopping from seawalls, which caused significant 

damage to the infrastructures including the damage and shut-downs of three nuclear reactors (Koshimura 

et al., 2015, NOAA, 2011). The epicentre and tsunami travel time map of the Tohoku earthquake is 

taken from the NOAA’s DART portal (https://www.ngdc.noaa.gov/hazard/dart/2011honshu_dart.html) 

and depicted in Fig. 1. As this figure confirms, there were some DART stations located in the Pacific 

for the recording of the wave field parameters such as the water surface fluctuations (NOAA, 2011). 

Along the Pacific, significant changes in the wavefield and water surface fluctuations are observed even 
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after 20 hours. Such observation times are also confirmed by various software available in the literature. 

FUNWAVE model is a Boussinesq equation solver and the simulation of the Tohoku 2011 tsunami 

event depicted in Fig. 2 confirms this finding. It is possible to download the data for different stations 

using the DART portal. In this study, we use the data given for station 21418, which is one of the closest 

stations to the epicenter of the Tohoku 2011 earthquake. 

 
Figure 1. Map for the Tohoku earthquake travel times generated by TTT software developed by 

Paul Wessel, figure courtesy of NOAA (2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Water surface levels after 14hrs obtained by Boussinesq equation solver FUNWAVE model  
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2. Observation of Tsunami Parameters by Compressive Sensing 

2.1. Review of the Compressive Sensing 

Compressive sampling (CS) is one of the most revolutionary algorithms of the era (Candes et al., 2006a, 

2006b). A brief summary of the CS is tried to be given in this section. Consider the signal η which is K-

sparse. That is only K of the N entries are nonzero. It is possible to transform η into an orthogonal 

domain, such as the spectral Fourier domain by means of a transformation matrix Ψ. Thus the 

representation of the signal becomes ˆ =  , where ̂  denotes the coefficient vector. One can get 

ˆ
s s =  , where s  is the signal with non-zero entries,  after eliminating the zero entries. CS algorithm 

states that a K-sparse signal η having  N entries can exactly be reconstructed by using

2( ) log( )M C K N   samples. In this formulation,  denotes the sensing and  denotes the 

transformation basis (Candes et al., 2006a, 2006b) and 
2( )   is their mutual coherence. C shows a 

positive constant.  Taking M random projections and by using the sensing matrix, one can get g =  . 

Thus, the CS problem can be formulated as  

1

ˆmin
l

 subjected to ˆg =                     (1)  

where 
1

ˆ ˆ
il

i

 =  . The l1 solution of the CS problem can be calculated as ˆ
CS =   (Candes et al., 

2006a, 2006b). The reader is referred to Candes et al. (2006a, 2006b) for a comprehensive discussion of 

the CS.  

 

3. Results and Discussion 

In order the discuss and prove the applicability of the CS for successful measurements and 

reconstruction of the tsunami parameters, we first use the Tohoku 2011 tsunami water surface 

fluctuation time series recorded at station 21418 and depicted in Fig. 3. On March 11th, 2021 at around 

05.48 am the initial peak and around 06.13 am the main peak appears in the recordings of station 21418. 

The peak wave height recorded at this station is observed to be around H=2.15m. 

 

Figure 3. Time series of the Tohoku 2011 tsunami event recorded at station 21418. 

 

3.1. Results for the Tsunami Water Surface Fluctuations  

In this section, we discuss the possible usage of the CS for the recovery of the tsunami water surface 

fluctuation data measured at the station and depicted in Fig. 3. The Tohoku 2011 tsunami time series 
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data depicted in Fig. 3 exhibits a fluctuating behavior before and after the tsunami event. Thus, the 

spectra of this time series have a sparse representation in the Fourier domain, as illustrated in Fig. 4. 

 
Figure 4. Spectra of the Tohoku 2011 tsunami time series measured at station 21418: a) classical 

sampling with 4957 samples b) CS reconstruction with 3500 samples. 

 

As illustrated in Fig. 4, the time series of the Tohoku 2100 tsunami has a sparse spectrum. The classical 

spectrum has 4957 samples and by taking 3500 random measurements and solving the l1 problem of the 

CS, we construct the spectra depicted in the second subfigure of Fig. 4. As one can observe from the 

figure, the spectral information around the central wavenumbers is well-preserved during the CS 

process. However, at high absolute wavenumbers, some mismatch is present in the form of white noise 

due to the random sampling process. The time series corresponding to the spectra depicted in Fig. 4 are 

constructed by an inverse Fourier transform operation and displayed in Fig.5. 

 
Figure 5. Time series of the Tohoku 2011 tsunami event recorded at station 21418: a) classical 

measurements b) compressive sampling reconstruction. 

 

In Fig.5, it is clear that the effect of white noise is present. This causes some distortion of the time series, 

but it can be easily filtered out using a low-pass filter. The CS algorithm can successfully recover the 

initial peak and main peak of the water surface fluctuation of the Tohoku 2011 tsunami. The significant 
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advantage of the CS-based method is the number of samples and the undersampling ratio. The number 

of compressive samples is 3500 for this case, however, depending on the behavior of the time series, it 

is possible to achieve an exact recovery using an even fewer number of samples. The undersampling 

ratio is very beneficial for many measurements, analysis, interpolation/extrapolation, and structural 

health monitoring applications. The number of sensors as well as the temporal resolution of the 

measurements can be reduced to minimize measurement and data storage requirements. Although the 

findings presented above are given for the water surface fluctuations, they can be easily extended for 

the reconstruction of other parameters such as nonlinear tsunami and rogue wave interactions and 

tsunami-induced vortices (Bayındır, 2019, Bayındır et al., 2021). 

 

3.2. Results for the Tsunami Induced Long-Wave Pressures 

In order to design coastal protection structures, the loads induced by long waves need to be determined. 

There are various formulas proposed in the literature for this purpose (Goda, 2010). One of the most 

commonly used formulas for the estimation of the long-wave induced pressures is Hiroi’s formula given 

as 

1.5P gH=                  (2) 

Here P is the long-wave induced pressure, ρ is the seawater density, g is the gravitational acceleration 

and H is the long-wave height. This formula provides a uniform distribution along with depth in 

accordance with the depth-averaged long-wave celerity. Coastal and other sea defence structures are 

equipped with measurement tools can measure the wave-induced pressures in a real structural health 

monitoring setting or in the laboratory environment. In order to discuss the typical form of the loading 

we use the parameters as ρ=1025 kg/m3, g=9.81m/s2, H=2.15 m as the representative values of the 

Tohoku 2011 tsunami event at station 21418, and plot the corresponding depth variations in Fig. 6. 

 

 
Figure 6. Compressive sampling reconstruction of the time series of the wave moment exerted by a 

monochromatic wave on a pile. 

 

As Fig. 6 confirms, the depth variation can be successfully reconstructed using 64 compressive samples, 

where the classical measurements require 1024 samples. This strategy also works if the variation of the 

parameter in consideration is small along with the depth. More importantly, it is possible to keep the 

temporal variation of the wave height, H(t), and use this time series in Hiroi’s formula to obtain the time 

series of the long wave-induced force. Thus CS can be effectively used to construct the time series and 
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depth variation of the wave-induced parameters effectively. One can also extend our results to construct 

the 2D wavefield properties and use CS for efficient monitoring and assessment of the health of coastal 

structures. 

 

4. Conclusion 

In this study, we studied the problem of efficient sensing of the tsunami and tsunami-structure interaction 

parameters by compressive sensing. Using a data set recorded during the Tohoku 2011 tsunami event, 

we showed that water surface fluctuations of long waves can be efficiently measured and recorded using 

the compressive sensing technique. We also showed that long-wave induced pressure profiles can be 

efficiently recorded using a far fewer number of sensors than the classical sampling theory dictates. Our 

finding can also be extended for the enhancement of other tsunami-related technologies, such as the 

tsunami early warning systems. It is also possible to measure, analyze and interpolate the 

aforementioned and other types of tsunami data including horizontal excursion velocities, diffraction, 

and vortex fields. If a tsunami event occurs in a calm environment with no wave present, such a signal 

may also be treated as a sparse signal in the time/spatial domain, thus random compressive sampling 

can be performed in the Fourier domain.  
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Abstract 

In this study, a pre-emptive goal programming model is proposed for resource dependent assembly line 

balancing problem in order to provide flexibility for decision makers based on their decision 

environment and preferred priorities. Three conflicting goals namely total cost of workstation utilization 

(total number of utilized workstations), cycle time and total cost of additional resources such as 

equipment and assistant workers are considered. The proposed model is validated on an illustrative 

example and a scenario analysis is performed with different priority levels of the goals. The results show 

that the proposed goal programming formulation is valid and useful for balancing resource dependent 

assembly lines. 

 

Keywords: Goal programming, line balancing, resource dependent assembly lines 

 

1. Introduction 

Assembly line balancing (ALB) is determining which task will be assigned to which workstation in such 

a way that precedence relations among tasks are not violated, sum of processing times of tasks in each 

workstation does not exceed cycle time and a performance measure is optimized. This performance 

measure is usually minimization of the number of workstations utilized over the line. 

ALB problems was first studied by Salveson (1955) and they are interested by many researchers to date. 

The literature review studies of Baybars (1986), Ghosh and Gagnon (1989), Erel and Sarin (1998), 

Becker and Scholl (2006), Scholl and Becker (2006), Battaïa and Dolgui (2013) and Sivasankaran and 

Shahabudeen (2014) are useful for the interested readers. 

In most of the ALB studies it is assumed that there is only one and fixed processing time for each task. 

However, this situation could not always be practical especially when different resource alternatives 

such as particular equipment or an assistant worker are available to process a task with different 

durations. Some tasks in practice cannot be processed by only one worker and may necessarily need to 

have additional assistant worker or particular equipment. Alternatively, assistance of another worker or 

use of an equipment type can reduce the processing time of a task even though these additional resources 

are not necessary. In this case, different processing alternatives (resource combinations) have to be used 

in the line (Kara et al., 2011). 

Faaland et al. (1992) have defined this problem as resource dependent assembly line balancing problem 

(RDALB). Kara et al. (2011) have addressed the problem from a wide point of view and have adapted 

the RDALB approach to U-shaped assembly lines (RDULB) with some new practice-oriented 

assumptions. 

In practice, assembly line managers may prefer to obtain compromise solutions among several 

conflicting objectives rather than optimising a single objective. The objectives and the priority levels of 
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these objectives may be different with regard to the decision maker and decision making environment 

(Kara et al., 2010). 

In this study a goal programming (GP) approach is proposed for RDALB in order to provide flexibility 

for decision makers based on their preferred priorities. 

 

2. A GP Model for RDALB 

The GP concept was introduced by Charnes and Cooper (1957) and has been widely used as an important 

modelling technique for multi-criteria decision making problems (Kara et al., 2010). 

In this section, a pre-emptive GP model for RDALB is proposed by adhering to the  assumptions of 

Kara et al. (2011) for RDALB. The proposed model is structured on Kara et al. (2011)’s mathematical 

formulation. It is also assumed that the decision-maker is able to determine goal values precisely and 

following three conflicting goals are included to the model: Goal 1 (G1): total cost of utilized 

workstations (worker + fixed cost), Goal 2 (G2): cycle time and Goal 3 (G3): total cost of additional 

resources (operating cost of equipment and employment cost of assistant workers). 

G1 can also be thought as the total number of utilized workstations depending on the assumption that 

utilization costs of all workstations are equal to each other. 

 

2.1. Notation 

Indices, Parameters and Sets 

i, r, s  : task 

j  : workstation 

e  : equipment 

t0
ie  : completion time of task i with equipment e without assistant 

t1
ie  : completion time of task i with equipment e with assistant 

N  : set of tasks 

E  : set of equipment 

Ei  : set of equipment which can be used to process task i  

NEe  : available number of equipment e 

NA  : available number of assistants 

W  : set of workstations 

PR  : set of precedence relations  

(r,s)PR : a precedence relation; task r is an immediate predecessor of task s 

M  : a big number 

CW  : utilization cost of a workstation (worker + fixed costs) 

CA  : employment cost of an assistant 

ce  : operating cost of equipment e 

CostW  : goal value for the total cost of workstation utilization (goal 1) 

CT  : goal value for the cycle time (goal 2) 

CostR  : goal value for the total cost of additional resources (goal 3) 

 

Variables 

xij : 1, if task i is assigned to workstation j; 0, otherwise 

pije : 1, if task i is assigned to workstation j with equipment e without assistant; 0, 

otherwise 

qije : 1, if task i is assigned to workstation j with equipment e with assistant; 0, otherwise 

zje : 1, if equipment e is assigned to workstation j; 0, otherwise 

uj : 1, workstation j is utilized; 0, otherwise 

kj : 1, if an assistant is assigned to workstation j; 0, otherwise 

d- : under achievement of the goal 1 

d+ : over achievement of the goal 1 

fj
- : under achievement of the goal 2 

f+ : over achievement of the goal 2 
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g- : under achievement of the goal 3 

g+ : over achievement of the goal 3 
 

2.2. Mathematical Formulation 
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The objective functions defined in (1), (2) and (3) minimizes the over achievements of the goals 1, 2 

and 3 respectively. As an example, the goal of total workstation utilization cost (G1) is achieved when 

d+ is found to be zero in the solution of the model. If d+ is greater than zero, it means that the G1 is not 

achieved. Equation (4) ensures that each task is assigned to at least and at most one workstation. 

Equation (5) determines the resources (equipment type and assistant) allocated to a workstation. 

Precedence relationships among tasks are satisfied by the set of constraints given in equation (6). 

Equation (7) determines whether workstation j is utilized or not. Equation (8) determines whether 

equipment e is allocated to workstation j or not. Equation (9) restricts the allocated number of equipment 

type e by the available number of this equipment type. Equation (10) determines whether an assistant is 

assigned to workstation j or not. Equation (11) ensures that the number of assistants assigned to 

workstations does not exceed the available number of assistants. Equations (12), (13) and (14) are the 

goal constraints for the goals 1, 2 and 3 respectively. Finally, equations (15) to (17) are sign constraints. 
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3. Illustrative Example and Scenario Analysis 

In this section, the proposed GP formulation is validated on an illustrative problem. Firstly, required 

data of an RDALB problem with 10 tasks is given. Then, the problem is solved using the proposed pre-

emptive GP model and results are presented. Finally, a scenario analysis is performed by solving the 

mentioned illustrative problem with six different goal priority orders.  

 

3.1. Problem Data 

Table 1 presents the precedence relations and the tasks processing times of the illustrative problem with 

resource alternatives of the tasks. In the Table 1, i and IPi columns denote the task number and the 

immediate predecessors of task i respectively. The other cells of the table are about processing 

alternatives of the tasks. For example, task #5 has only one processing alternative without any assistance 

and any equipment. The processing time of the task #5 is 6 minutes. On the other hand, task #4 has two 

processing alternatives. This task can be completed manually (without any equipment) by one worker 

in 5 minutes. But the processing time of the task #4 can be reduced to 3 minutes by assistance of an 

assistant worker. Another example is task #3. As is seen in the Table 1, task #3 has only one processing 

alternative with assistant and can be completed in 13 minutes. This means that, task #3 cannot be 

completed without assistance. In addition, Table 1 indicates that, task #2 has four different resource 

alternatives. Task #2 can be completed by one worker in 10 minutes manually, in 7 minutes using 

equipment #1 and in 8 minutes using equipment #2. Alternatively, this task can be completed in 7 

minutes with assistance of an assistant worker without using any of the equipment.  

 

Table 1. Illustrative Problem Data 

i IPi 

Task Completion Times 

i IPi 

Task Completion Times 

Assistant 
Equipment 

Assistant 
Equipment 

No 1 2 3 No 1 2 3 

1 - 
Yes     

6 2,5 
Yes     

No 5   4 No 8 6  6 

2 - 
Yes 7    

7 6 
Yes     

No 10 7 8  No 7    

3 - 
Yes 13    

8 7 
Yes     

No     No 4   3 

4 1 
Yes 3    

9 3,7 
Yes 5    

No 5    No     

5 4 
Yes     

10 9 
Yes     

No 6    No 13    

 

The other parameters defined in the model are taken as CW=10, CA=6, c1=3.3, c2=1.7 and c3=1.5 money 

units. Available number of assistants, equipment #1, equipment #2 and equipment #3 are 2, 1, 1 and 2, 

respectively. ‘No equipment’ case is also defined by labelling the equipment type 0. All of the processing 

alternatives, task times, costs and available number of the resources are generated randomly. 

It is also assumed that the assembly line manager desires to achieve the following precise goals with 

their priorities: 

• Goal with priority level 1: total cost of utilized workstations should not exceed 40 money units 

(CostW = 40). 

• Goal with priority level 2: cycle time should not exceed 15 minutes (CT = 15). 

• Goal with priority level 3: total cost of additional resources should not exceed 16 money units 

(CostR = 16). 
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3.2. Solution of the Illustrative Problem 

Based on the priority levels of the goals, the problem is solved in seconds using CPLEX 12.5 on a 

workstation with an Intel Xeon E5-1650 (6 Core) 3.20 GHz processor with 16 GB RAM. 

After the solution of the model with the objective of minimizing the over achievement of G1, the 

deviational variable d+ was found to be 0. This means that G1 is achieved. The total cost of utilized 

workstations will be 40 money units, in other words four workstations will be utilized. 

Then the yielded value of d+ was fixed by adding a new constraint to the model such as d+=0 and the 

model was re-solved with the objective of minimizing the over achievement of G2. In this case, the 

deviational variable f+ was found to be 3. This means that G2 is not achieved, and the assembly line will 

be operated at 15+3=18 minutes of cycle time.  

Finally, the yielded value of f+ was fixed by adding a new constraint to the model such as f+=3 and the 

model was re-solved with the objective of minimizing the over achievement of G3. In the solution, the 

deviational variable g+ was found to be 0.8. This means that G3 is not achieved, and the total cost of 

additional resources will be 16+0.8=16.8 money units. The final solution of the model is given in Table 

2. 

Table 2. Final Results of the Illustrative Problem 

Workstation 
Assigned 

Tasks 
Workload 

Assigned 

equipment 

Assistant 

worker 

Cost of workstation 

utilization 

Cost of additional 

resources 

1 1,3 18 - Yes 10 6 

2 2,4,5 18  #1 No 10 3.3 

3 6,7,8 16 #3 No 10 1.5 

4 9,10 18 - Yes 10 6 

Total cost of workstation utilization 40  

Total cost of additional resources 16.8 

 

3.3. Scenario Analysis 

Above mentioned three precise goals of the proposed GP model can be ordered in 3!=6 different ways 

depending on their priority levels.  The illustrative problem is solved for these six different scenarios 

and results are presented in Table 3. 

 

Table 3. Scenario Analysis by Changing the Priority Levels of the Goals 

Scenario 
Priority 

Order 
d+ f+ g+ 

Unsatisfied 

Goals 

Cost of 

workstation 

utilization 

Cycle 

Time 

Cost of 

additional 

resources 

1 G1-G2-G3 0 3 0.8 G2, G3 40 18 16.8 

2 G1-G3-G2 0 4 0 G2 40 19 15 

3 G2-G1-G3 10 0 2.3 G1, G3 50 15 18.3 

4 G2-G3-G1 20 0 0 G1 60 15 13.5 

5 G3-G1-G2 0 4 0 G2 40 19 15 

6 G3-G2-G1 20 0 0 G1 60 15 13.5 

 

Table 3 shows that either G1 or G2 is not satisfied in all of the scenarios. G2 is not satisfied in the case 

that G1 has a higher priority level compared to G2 (Scenarios #1, #2 and #5). Similarly, G1 is not 

satisfied in the case that G2 has a higher priority level compared to G1 (Scenarios #3, #4 and #6). This 

means that if the total cost of utilized workstations namely the number of workstations is limited by a 

smaller value, the assembly line will be operated with a longer cycle time. On the other hand, if the cycle 

time is limited by a shorter value, a greater number of workstations should be utilized. In addition, it is 

seen in Table 3 that, G3 is not satisfied in two of the scenarios (#1 and #3) only if it has the lowest 

priority level. This means that if the number of workstations and cycle time are both limited, the 

allocated budget for the additional resources should be increased. 

 



2nd International Conference on Applied Mathematics in Engineering (ICAME’21)  

September 1-3, 2021 - Balikesir, Turkey 

 

25 

 

4. Conclusion 

In this study, a pre-emptive goal programming model for the RDALB problem is proposed. Three 

conflicting goals such as total cost of utilized workstations (total number of utilized workstations), cycle 

time and total cost of additional resources are considered. The proposed model is validated on an 

illustrative example and a scenario analysis performed with different priority orders of the goals. With 

the consideration of multiple objectives and priority selections, the proposed model provides flexibility 

for decision makers. 

Development of efficient heuristic methods for larger sized problems can be considered as future 

research due to the NP-hard nature of the RDALB problems. Fuzzy GP approaches can also be adapted 

to the problem for providing more flexibility to decision makers based on their decision environments.  
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Abstract 

Simulations of temperature fields and stress fields during selective laser melting (SLM) of 316L stainless 

steel powder were performed using the finite element method. The effects of the scanning strategies on 

the SLM thermal behaviour, stress evolution, and residual stress were investigated. The commercial 

finite element analysis software ANSYS (APDL) was used to establish a single-layer multi-track three-

dimensional transient numerical model of SLMed 316L stainless steel. The model considers the 

temperature-dependent material properties, including thermal conductivity, density, enthalpy, yield 

stress, thermal expansion coefficient, and Young’s modulus. Three partition scanning strategies were 

designed. In addition to the different sizes of the divided areas, the three scanning strategies had the 

same total scanning area and other settings.  

 

Keywords: Selective laser melting, Numerical simulation, Thermal behaviour, 316L stainless steel 

 

1. Introduction 

Because of its excellent corrosion resistance, high-temperature creep performance, and work hardening 

performance, 316L stainless steel is widely used in various fields, such as automobile manufacturing 

and aerospace. (Alvi, Saeidi, & Akhtar, 2020). However, with the increasingly complex geometry of 

316L parts, traditional manufacturing processes have been unable to meet the production requirements. 

Therefore, a new processing method is needed to meet the needs of parts with complex structures. 

The selective laser melting (SLM) technology is an advanced metal additive manufacturing technology 

based on the principle of dispersion and accumulation. The SLM technology combines computer-aided 

design (CAD) three-dimensional (3D) modelling, computer module management, laser, and other 

related technologies. A solid model is established by the CAD software, and the model slices are 

processed in layers. The two-dimensional (2D) contour information of the layered slices is imported into 

the computer. Under the control of the computer, the powder in the selected area is melted and solidified 

layer by layer by using laser, and the three-dimensional solid is formed layer by layer (Wang, Lei, Zhu, 

Chen, & Fang, 2019; Zhang, Zhu, Qi, Hu, & Zeng, 2016). The SLM technology uses the metal powder 

to directly obtain solid parts with arbitrary complex shapes without any fixture or mould, and thus is 

particularly suitable for manufacturing titanium alloy superalloy parts with a complex inner cavity 

structure, which has a wide range of applications in aerospace, automobile, medical moulds, and other 

fields (Kimura et al., 2019). The transient thermal behaviour in the SLM process is largely affected by 

the manufacturing process parameters. In order to obtain ideal SLM manufacturing parts, a considerable 

amount of experimental research is often required. Therefore, the numerical simulation method is 

selected as a typical method to solve these problems. 

 
* Corresponding Author 
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Furumoto et al.(Furumoto et al., 2017) established a 2D finite element model to simulate and study the 

thermal deformation behaviour of a chromium-molybdenum-based metal powder and an iron-nickel-

based metal powder during the SLM process, and carried out the corresponding experimental 

verification. Ilin et al.(Ilin et al., 2014) used MSC.Marc to establish a 2D model of SLM manufacturing 

316L, which simulated the effects of laser power, scanning speed, and tilt angle on the width and depth 

of the molten pool, which were consistent with the experimental data. Chen et al.(Chen et al., 2019) 

established a multi-material finite element model of a Ti6Al4V layer and a TiB2 layer, and studied the 

influence of the process parameters on the maximum temperature of different material interfaces, the 

temperature gradient, and the existence time of the molten pool during the SLM process. Li et al.(Li & 

Gu, 2014) used the ANSYS finite element software to establish a 3D finite element model of the 

relationship between the AlSi10Mg powder’s SLM process parameters and thermal behaviour. The 

effects of laser power and laser scanning speed on the thermal behaviour and structure of the molten 

pool were analysed. Although some numerical simulations have been conducted to study the thermal 

behaviour of metal powder during laser processing, the research on the thermal behaviour of 316L 

stainless steel powder during laser processing is still limited. There are few studies on the influence of 

different scanning strategies on the temperature and stress fields of 316L stainless steel. In the metal 3D 

printing process, the selection of the scanning strategy affects not only the surface quality and 

dimensional accuracy of the parts but also the manufacturing time of the parts. Therefore, the finite 

element analysis software ANSYS was used to conduct a numerical simulation of SLM manufacturing 

316L stainless steel, and the influence of the scanning strategy on the thermal behaviour stress evolution 

and residual stress distribution of 316L stainless steel during SLM manufacturing was analysed. 

 

2. SLM Theoretical Model 

2.1. Temperature Control Equation  

The SLM process is a process of rapid metal melting and solidification. With the movement of the laser 

beam acting on the powder layer, the temperature of the entire powder bed changes with a change in the 

laser action time and position. SLM processing can be regarded as a closed adiabatic system, so the 

temperature field variation can be expressed by the 3D transient heat conduction formula: 

𝑝𝑐
𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑥
(𝑘𝑥

𝜕𝑇

𝜕𝑥
) 𝜋𝑟2 +

𝜕

𝜕𝑦
(𝑘𝑦

𝜕𝑇

𝜕𝑦
)𝜋𝑟2 +

𝜕

𝜕𝑧
(𝑘𝑧

𝜕𝑇

𝜕𝑧
) 𝜋𝑟2 + 𝑄 (1) 

where ρ, c, T, k, and Q are the density, specific heat capacity, temperature, thermal conductivity, and 

heat generation of the internal heat source per unit time per unit volume, respectively; t is the time, and 

c and k vary with the temperature. 

The initial temperature of the powder bed at t = 0 can be defined by the following formula: 

T(𝑥, 𝑦, 𝑧, 𝑡)| t=0 = 𝑇0 ,    (𝑥, 𝑦, 𝑧) ∈ D (2) 

Where T0 is 25℃. 

Before laser loading, the initial temperature of the powder and substrate was the same as the temperature 

of the ambient gas; thus, T0 = 298 K. The powder layer and the outer surface of the substrate were in 

contact with the surrounding free-flowing gas and meet the following radiation and convection heat 

dissipation boundary conditions: 

𝑘
𝜕𝑇

𝜕𝑛
+ ℎ(𝑇 − 𝑇0) + 𝜎𝜀(𝑇4 − 𝑇0

4) = 0 (3) 

where n is the vector along the normal direction of the powder bed surface; T is the surface temperature 

of the powder bed or molten pool; h is the surface convection coefficient; ε is the thermal radiation 

coefficient; σ is the Stefan–Boltzmann constant, equal to 5.67×10-8W·m-2·K-4. In the calculation, the 

convection heat transfer coefficient and the radiation coefficient were fitted to the total heat transfer 

coefficient to reduce the degree of non-linearity, and its magnitude was 80W·m-2·K-1. 
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2.2. FE Model Set-up 

The ANSYS finite element software was used to establish the model and calculate the temperature and 

stress fields. The finite element model of SLM processing is shown in Figure 1(a). The model was 

composed of a powder bed and a base plate. The size of the 316L powder bed was 3.96 mm × 3.48 mm 

× 0.04 mm, and the substrate material was forged 316L stainless steel with a size of 3.96 mm × 3.48 

mm × 2 mm. Considering the accuracy and efficiency of the simulation, the model adopted the mapping 

meshing method, and the solid 70 element was used for meshing. The monitoring point node 1 in Figure 

1(b) was located on the interface between the powder bed and the substrate at the end of the first pass. 

The partition scanning strategy setting is shown in Figure 2. In this figure, the whole scanning area is 

divided into several small regions. The number indicates the scanning sequence of the regions, and the 

yellow arrow represents the first track scanned in each region. Strategy 1, Strategy 2, and Strategy 3 are 

different in terms of the sizes of the regions, but the total area scanned (1.96 mm × 1.48 mm) and the 

other settings were the same. 

 
Figure 1. (a)Finite element model and scanning strategy, (b) location of monitoring point node 1 

 

 
Figure 2. Partition scanning strategy 

 

2.3. Heat Source Model 

The heat source is related to the power of the laser, the diameter of the spot, and the size of the 

distribution, which determines the difference in the temperature distribution. The laser beam distribution 

modes mainly include Gaussian laser distribution and uniform distribution. The laser divergence angle 

of the Gaussian energy distribution is small, and it can focus on a smaller laser focus compared with a 

uniformly distributed laser beam. In the SLM process, the laser beam irradiated the metal powder in the 

form of a spot, with a small spot diameter, high laser energy density, and strong penetration. The heat 

source model of the Gaussian laser distribution is shown in Figure 3, which satisfies the following 

Gaussian distribution formula: 

e =
2𝐴𝑃

𝜋𝑟2
exp (−

2𝑟2

𝑅2
) (4) 

where A is the absorption rate of the laser beam on the surface of the material, P is the laser power, r is 

the distance from a point in the spot to the spot centre, and R is the spot radius. When the energy 

distribution mode of the laser beam is uniform, its heat flux density can be expressed as follows: 
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𝑞 =
𝐴𝑃

𝜋𝑟1
2
 (5) 

 
Figure 3. Gaussian heat source model 

 

3. Results and Discussion 

Figure 4 shows the temperature change diagram and the temperature change diagram of Node 1 with 

time for different scanning strategies. It can be seen from the figure that the maximum temperature for 

the different scanning strategies was basically the same. As the scanning proceeded, the final 

temperature tended to be around 250°C. However, the heat accumulation effect under the different 

scanning strategies was obviously different. From Strategy 1 to Strategy 3, the divided areas increased, 

and the length of the scan track in each area decreased, which caused the heat accumulation effect in 

each area to be even greater. As the scan length decreased, the second peak-to-peak value of both 

Strategy 2 and Strategy 3 increased significantly. In particular, for strategy 3, the scanning length was 

sufficiently short for the second peak to be close to the highest peak, which effectively reduced the 

cooling rate and the temperature gradient of the node. In addition, because of the shortening of the 

scanning length, the preheating effect was more obvious. The preheating temperature of Strategy 3 was 

significantly higher than that of Strategy 1 and Strategy 2, which reduced the temperature difference at 

this point and thus reduced the temperature gradient. As shown in Figure 4(b), there was little difference 

between the maximum cooling rates of Strategy 1 and Strategy 2 (approximately 8.5106°C /s), while 

both the heating rate and the cooling rate of Strategy 3 decreased significantly, among which the 

maximum cooling rate was 5.7106°C /s, showing a decrease of 33%. This was because the scanning 

length was very short. While the cooling of the previous one was not completed, the heating of the next 

one began, which had a considerable impact on the grain growth. For partition scanning, the size of 

partition scanning largely determined the heat accumulation in the SLM processing process, thus 

affecting the cooling speed and the temperature gradient. 

 
Figure 4. (a) Temperature history graph and (b) temperature change rate history graph of node 1 for 

different scanning strategies 

 

Figure 5 shows the equivalent stress (von Mises stress) history of node 1 for different scanning 

strategies. The scanning strategy played an important role in the evolution of stress, and the stress 

evolution under different scanning strategies was considerably different. It can be seen from the figure 

that the stress change curve and the temperature change curve presented an obvious corresponding 

relationship. Although node 1 had not been heated, the equivalent stress appeared because the selected 
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node 1 was located on the interface between the powder bed and the substrate. As the heat source moved, 

the stress increased continuously until the heat source reached node 1; then, the equivalent stress dropped 

to 0. Thereafter, the equivalent stress fluctuated with the constant fluctuation of the temperature. Finally, 

after 100 s of cooling, the equivalent stress tended to be stable. The residual stresses of Strategy 1, 

Strategy 2, and Strategy 3 were 305 MPa, 296 MPa, and 286 MPa, respectively. It can be seen that the 

partition scanning reduced the residual stress of node 1, and as the partition increased, the residual stress 

decreased more significantly. 

 
Figure 5. Von Mises stress history diagram of node 1 for different scanning strategies: (a) Strategy 1, 

(b) Strategy 2, and (c) Strategy 3 

 

Figure 6 shows the residual stress distribution of the finite element model after cooling to room 

temperature. It can be clearly seen from the figure that the scanning strategy had a greater impact on the 

residual stress distribution of the model, and the residual stress distribution under different scanning 

strategies was considerably different. Partition scanning reduced the residual stress of the model to a 

certain extent. Strategy 2 reduced the maximum residual stress of Strategy 1 by 2%, and Strategy 3 

reduced the maximum residual stress of Strategy 1 by 6%. 

 
Figure 6. Residual stress distribution of the finite element model: (a) Strategy 1, (b) Strategy 2, (c) 

Strategy 3 



2nd International Conference on Applied Mathematics in Engineering (ICAME’21)  

September 1-3, 2021 - Balikesir, Turkey 

 

31 

Note that there was a problem of overlap between each small area in the partition scanning, and the 

scanning sequence of each small area affected the temperature field, which in turn affected the final 

residual stress distribution of the part. Therefore, the partition scanning strategy still needs to be studied 

in depth. 

 

4. Conclusion 

In this study, the effects of scanning strategy on the thermal behaviour, stress evolution, and residual 

stress distribution of the 316L stainless steel SLM manufacturing process were analysed using 

simulations. The main conclusions were as follows:  

The results showed that for partition scanning, the partition size largely determined the heat 

accumulation during SLM processing, which in turn affected the cooling rate and the temperature 

gradient. Partition scanning reduced the residual stress of the part to a certain extent, and as the partition 

increased, the scanning length decreased and the residual stress decreased more significantly. The effect 

of heat accumulation under different scanning strategies was obviously different. As more regions were 

divided, the length of the scan track in each region decreased, which resulted in more significant heat 

accumulation effects in each region. The reduction of the scan length could effectively reduce the 

cooling rate and the temperature gradient of the node. Strategy 2 reduced the maximum residual stress 

of Strategy 1 by 2%, and Strategy 3 reduced the maximum residual stress of Strategy 1 by 6%. 
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Abstract 

Structural health monitoring of the maritime structures is a rapidly developing research area. One of the 

research directions followed within this context is the development of efficient mathematical data and 

signal processing techniques and their possible usage methods for the health monitoring of coastal and 

ocean structures. In this paper, we investigate the possible usage of one of such methods, namely the 

compressive sensing technique (CS), for the measurement and reconstruction of the vibration data of 

the coastal and ocean structures. CS algorithm outperforms the classical sampling theory by using far 

fewer measurements for the reconstruction of signals having sparse representation in different 

orthogonal domains. The aforementioned maritime structures are continuously subjected to harmonic 

loads in the marine environment, as well as impact loads such as shiploads, earthquakes. Thus, CS 

algorithm can be used for the reconstruction of vibration velocities, acceleration, and similar parameters 

under such loadings, which have sparse representations in Fourier or temporal/spatial domains. 

Implementing a circular cylinder and hollow elastic circular cylinder model for the modeling of the pile 

foundations, we show that CS can be effectively used for the monitoring and reconstruction of such 

vibration parameters under cyclic harmonic loads and impact loads including shiploads and earthquakes. 

We discuss our findings and their possible applicability and usage.  

 

Keywords: Coastal and ocean structures, structural vibration monitoring, compressive sensing 

 

1. Introduction 

Structural health monitoring is an active area of research, however, its application in the marine 

environment is still very limited. In its applications, better sensors and sampling strategies are always 

desired. With this motivation, in this paper, we investigate the possible usage of the CS for the efficient 

sensing of structural health monitoring parameters in maritime engineering. More specifically, we 

consider the efficient measurement of the wave-induced force and moments, as well as displacements 

induced by point harmonic loads. We construct the time series of the wave-induced force and moments 

using the Morison equation. We construct the time series of the displacements induced by point 

harmonic loads using an elastic hollow cylinder model described by the Flügge equations of elasticity. 

We show that all of these parameters can be constructed using far fewer samples than the classical 

Shannon’s theorem states, thus efficient measurement and analysis of such parameters with significant 

undersampling ratios are possible.  

 

2. Mathematical Formulation 

2.1. Review of Forces and Moments Exerted on a Pile by Monochromatic Waves  

 
* Corresponding Author 
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In this section, we summarize the Morison formula used for the calculation of forces and moments 

exerted by flows on objects with different cross-sections. We consider a circular cylinder, which can be 

a model for a pile foundation. For a pile of length dz, the Morison formula gives 

1

2
D I D M

Du
dF dF dF C u u C V

Dt
= + =  +              (1) 

where the subscripts D and I refer to the drag and inertia forces, respectively, CD, is the drag coefficient, 

CM is the inertia coefficient, ρ is the fluid density, A is the area perpendicular to flow, V is the volume of 

the element and u is the horizontal flow excursion velocity (Dean et al., 2000). After an integration over 

the depth, the total force can be computed by 

h

F dF



−

=                                  (2) 

where h is the depth and η is the water surface fluctuations. Linearization of this equation and its 

calculation for a pile with a diameter D subjected to horizontal excursion velocity of a monochromatic 

wave yields 

1 1 1cos( ) cos( ) tanh( )sin( )D M

D
F C DnE kx t kx t C DE kh kx t

H
= −  −  + −                 (3) 

Here n is the ratio of group velocity to wave celerity which is taken as 1 considering shallow water 

conditions, E=1/8ρgH2 is the wave energy, H is the wave height, k is the wavenumber, x1 is the location 

of the pile and ω=2π/T is the angular frequency and T is the period of the wave (Dean et al., 2000). 

Similarly, the total moment exerted by a monochromatic can be computed using 

( )
h h

M dM h z dF

 

− −

= = +                (4) 

which yields 

2

1 1

1

1 cosh 2 1 2( )
cos( ) cos( ) 1 ...

2 2 sinh 2

cosh 1
tanh( )sin( ) 1

sinh

D

M

kh kh
M C DnE kx t kx t h

n kh kh

D kh
C DE kh kx t h

H kh kh


   − + 
= −  −  − +   

     

 − 
              + −  −  

  

       (5) 

The parameters for computational purposes are selected as typical parameters in a real setting, namely 

CD=1, CM=2, D=1m, H=1m, ρ=1025 kg/m3, g=9.81m/s2, h=10m, T=15s, x1=0. Using shallow-water 

limit of the dispersion equation, the wavenumber is calculated using /k gh=  . 

 

2.2. Review of an Elastic Hollow Cylinder Model Subjected to Point Harmonic Load 

In order to simulate more a realistic scenario, we model pile foundation as a long hollow cylinder as 

illustrated in Fig.1 and we solve the Flügge equations of theory of elasticity. The pile is subjected to a 

horizontal harmonic force of P which can be a representation of a dynamic ship or anchoring load on a 

bollard or a similar structural element. For the sake of brevity, we do not give the full governing 

equations but the Flügge equations of elastic theory and its solutions in terms of Bessel and modified 

Bessel function can be seen in Forrest et al. (2006a, 2006b). We follow the approach described in Forrest 

et al. (2006a, 2006b), and obtain the horizontal displacement time series of an elastic long pile 

foundation under the effect of a harmonic load with many spectral components. The computational 

parameters in Forrest et al. (2006a, 2006b), are used to represent a large pile and the horizontal 

magnitude of the horizontal harmonic point load is taken as Pmag=1 kN.  
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2.3. Review of the Compressive Sensing 

Compressive sampling (CS) completely revolutionized the field of signal 

processing. Here, we try to give a brief sketch of the CS. Consider a K-

sparse signal r, that is only K out of its N elements are nonzero. Using an 

orthogonal transformation matrix Ψ, r can be transformed into an orthogonal 

domain, such as Fourier or wavelets domains. In such domains, the signal 

can be represented by ˆr r=  , where r̂  denotes the coefficient vector. 

Eliminating the zero entries, it is possible to get, ˆ
s sr r=  . Here, sr  denotes 

the signal with non-zero components.  

 

                      Figure 1. Model of a hollow pile 

Using CS algorithm a K-sparse signal r with  N entries can exactly be reconstructed using

2( ) log( )M C K N   measurements. Here, C is a positive constant,  is the sensing basis and  is 

the transformation basis (Candes et al., 2006a, 2006b, 2006c).
2( )   is the mutual coherence 

between these two. M random projections and the sensing matrix   can be used to obtain g r=  . Thus, 

one can state the problem as  

1

ˆmin
l

r subjected to ˆg r=                     (6)  

with 
1

ˆ
îl

i

r r=  . Among all possible solutions satisfying the given constraints, the l1 solution of the 

problem can be calculated as ˆ
CSr r=  . Other optimization techniques such as the re-weighted l1 

minimization or greedy pursuit algorithms can also be used for this purpose (Candes et al., 2006a, 2006b, 

2006c). We refer the reader to Candes et al. (2006a, 2006b, 2006c) for a comprehensive discussion of 

the CS. In hydrodynamics, there are some recent applications of the CS (Bayındır, 2016, 2019, Bayındır 

et al., 2021). 

 

3. Results and Discussion 

3.1. Results for Forces and Moments Exerted on a Pile by Monochromatic Waves  

In Fig. 2, we depict the time history of the wave force exerted by a monochromatic wave on a pile with 

the parameters given above. The original time series consists of 2041.  

 
Figure 2. Compressive sampling reconstruction of the time series of the wave force exerted by a 

monochromatic wave on a pile. 
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As indicated in Fig. 3, such a time history has a sparse representation in the frequency domain. Thus, by 

taking random projections in the time domain and solving the l1 problem of the CS, we construct the 

original time series and spectrum by using only 512 samples. Those CS reconstructions are depicted in 

Fig.2 and Fig.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Compressive sampling reconstruction of the spectrum of the wave force exerted by a 

monochromatic wave on a pile. 

 

In Fig.4, we show that the time series of the wave-induced moment on a pile with parameters given 

above can also be reconstructed using the same approach. The spectra of the time history of the moment 

are similar to the spectra of the wave force depicted in Fig. 3. Again, reconstruction is achieved using 

512 samples which brings a significant undersampling ratio which is very beneficial for many structural 

health monitoring purposes. 

 

Figure 4. Compressive sampling reconstruction of the time series of the wave moment exerted by a 

monochromatic wave on a pile. 

 

Although the findings presented above are given for monochromatic sea waves, our findings can easily 

be generalized to a more general and realistic setting. The wave excursion velocity u can be computed 

for the superposition of sea states which has a spectrum in JONSWAP or PM form. Then, using the 

Morison equation, the time history of the wave force and wave moment can be calculated. It is known 

that CS is successful for the reconstruction of the wavefields that have JONSWAP spectral 

representations (Bayındır, 2016). 
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3.2. Results for Displacements Induced by a Point Harmonic Load on Elastic Hollow Cylindrical 

Pile 

Solving the Flügge equation of elasticity and following the analysis described in Forrest et al. (2006a, 

2006b), we obtain the horizontal displacement spectra of long hollow elastic cylinder subjected to a 

horizontal time-harmonic point load and depict our findings in Fig. 5. The n numbers on this figure 

refers to various different resonant modes of the cylinder cross-sectional areas (Forrest et al., 2006a, 

2006b). 

 
Figure 5. Horizontal displacement spectrum of an elastic hollow cylinder subjected to point harmonic 

load. 

 

In order to construct the time-series of the horizontal displacement due to a time-harmonic point load, 

we use the spectrum depicted in Fig.5 and we inject uniformly distributed random phases and construct 

the time series of the displacement via an IFFT routine. The time series with 2001 samples constructed 

by such an approach is depicted in Fig. 6. 

 
Figure 6. Compressive sampling reconstruction of the time series of the horizontal pile displacement 

exerted by a horizontal harmonic point load. 

 

After the implementation of the CS algorithm with 1024 samples the time series is reconstructed and 

depicted in Fig. 6. As one can realize from the figure, the reconstruction is not exact, however, the range 

of amplitudes and wavelength are in very good agreement. Thus, the representative statistical parameters 

of the displacements such as rms or significant displacements can be successfully reconstructed by CS. 

Depending on the sparsity of the signal, the exact recovery can also be possible with an even smaller 

number of spectral components. This is also true for the time series of the force and moments discussed 

in the preceding sections. Thus, CS can be used as a very efficient algorithm for the measurement, 
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analysis, and interpolation/extrapolation of the time series acquired using structural health monitoring 

applications.  

 

4. Conclusion 

In this study, we investigated the possible usage of compressive sensing for the efficient sensing of the 

force, moment, and displacement induced by monochromatic sea waves and point loads. For this 

purpose, we have used the Morison equation and an elastic hollow cylinder model described by Flügge 

equations of the elastic theory. We showed the compressive sensing can be significantly advantageous 

for the measurement and analysis of such parameters. Although the main advantage is the significant 

downsampling ratio of the data, interpolation/extrapolation of the missing data is also possible by 

compressive sensing. Our approach would also be useful to the analysis of earthquake or ship impact 

effects, which have sparse representations in the time domain thus their random sampling should be 

performed in the spectral domain. 
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Abstract 

This study was carried out in a manufacturer that meets the plastic cups requirement of the food sector. 

The aim of the study is to find the mathematical relationship between the parameters affecting the 

thickness of the sheet in the extrusion process by the regression equation and to find out the optimum 

factor levels in order to obtain the target sheet thickness. To perform the optimization, response surface 

methodology (RSM) is used. RSM is one of the widely used modeling and optimization method. For 

this purpose, Minitab statistical analysis program was used. In order to determine whether the number 

of factors constituting the regression equation is sufficient or not, R2 determination coefficient is 

calculated and it is seen that it is quite close to 1. Then, analysis of variance (ANOVA) results were 

examined and it was concluded that the regression equation was significant at 95% confidence level 

(which means 𝛼=5%=0.05). According to Minitab ANOVA results; P-value is calculated as 0.047 which 

is lower than 𝛼=0.05. This means the regression equation is significant. After finding an available 

regression equation, the final step was optimization with the help of “Minitab Response Optimizer” 

module. Verification of the optimum result was performed by field tests and it was found that there was 

no significant difference between the expected output value and the observed and the results were quite 

successful. 

 

Keywords: Response surface methodology, process optimization, plastic extrusion method 

 

1. Introduction 

Plastic extrusion method is a manufacturing method used especially in the production of plastic materials 

such as pipes, hoses, cables, profiles. The molten plastic is shaped and cooled along the mold and the 

production takes place. In the extrusion process different factors affect the product quality. Optimization 

of these parameters aims to provide the desired quality of the final product (Karaoglan, 2021).   

Extrusion process optimization was investigated by many researchers. Artificial neural network (ANN), 

genetic algorithm (GA), response surface methodology (RSM), Taguchi, grey wolf optimizer (GWO), 

simulation-based optimization, goal programing, and etc. are used for optimizing different type of 

extrusion processes. The summarized literature review is presented in Table 1. In this study extrusion 

speed, roller rotation speed, pump speed, pressure, withdrawal speed of the molded product are selected 

as the factors and RSM is used for the optimization. This factor combination is used previously for 

optimizing the plastic extrusion process by using GWO (Karaoglan, 2021). However RSM did not used 

previously for this selected factor combination for optimizing plastic extrusion process and this is the 

novelty aspect of this research. In this study, the same process optimization problem with new raw 

material content is solved by RSM instead of GWO. The details and the differences of the raw material 

data is not given because of the commercial confidentiality. 
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Table 1. Literature review  

Author (s) Subject 

 

Method 

 

Zhou & Paik  (2004) Optimizing food extrusion process parameters ANN, GA 

Fowler et al. (2010) Optimizing the polymer extrusion filter layering 

configurations  

Simulation-based 

optimization 

Chen et al. (2013) Optimizing Ti-6Al-4V titanium alloy equal-channel 

angular extrusion (ECA) 

Taguchi 

 

Iqbal et al. (2016) Optimizing the forming parameters of the twist 

extrusion process 

RSM 

 

Al-Refaie & Musallam (2019) Optimizing the polyethylene extrusion process 

parameters 

Goal programing  

 

Karaoglan (2021) Optimizing plastic extrusion process parameters GWO 

 

In the following section the materials and methods are presented. Experimental results and the related 

discussions are discussed in Section 3. Conclusions are given in Section 4.  

 

2. Materials and Methods 

In this study experimental runs are performed at plastic sheet production line (machine brand: Suzhou 

2014 with 400 kg/h capacity). Then regression analysis is used for mathematical modeling. The R2 and 

ANOVA are also calculated. Minitab statistical package is used for this purpose. The extrusion line is 

same as the line used in the study presented by Karaoglan (2021), However the raw material content 

and environmental conditions are different. So the observed response values and the mathematical 

model is differs. “Minitab Response Optimizer” module is used for the optimization. After the 

optimization process, confirmations are performed at plastic sheet production line. The plastic extrusion 

line that will be optimized is presented in Figure 1.  

 

 
Figure 1. The plastic extrusion line that will be optimized 

 

3. Results and Discussion 

In the first stage; factors are determined and the observations are measured from the extrusion 

line for different combinations of these factors. Totally 17 different combination of factors are 

observed from the extrusion line. Because of having commercial confidentiality, the factor 
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levels are coded between -1 and +1 (where -1 means the minimum value for the related factor, 

while +1 is the maximum value). The coded values for the observations are given in Table 2. 

The coding is carried out using Equation (1): 

 

𝑋𝑐𝑜𝑑𝑒𝑑 =
𝑋𝑢𝑛𝑐𝑜𝑑𝑒𝑑−((𝑋𝑚𝑎𝑥+𝑋𝑚𝑖𝑛)/2)

(𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛)/2
                                          (1) 

 

Table 2. Experimental results 

  

Run 

Factors Response 

Roller Rotation 

Speed 

(rpm/min)  

(X1)  

Extrusion 

Speed 

(rpm/min) 

(X2) 

Pump Speed 

(rpm/min) 

(X3) 

Pressure  

 

(bar) 

(X4) 

Withdrawal Speed of 

the Molded Product 

(rpm/min) 

(X5) 

Thickness of the 

Plastic Sheet 

(mm)  

(Y) 

1 0.2000 -0.3333 0.7635 -1.0000 0.2121 1.21 

2 0.0000 -0.3333 1.0000 -1.0000 0.2121 1.19 

3 0.0000 -0.3333 0.8424 -1.0000 -0.3939 1.21 

4 0.0000 0.3333 0.5468 1.0000 -0.3939 1.18 

5 -1.0000 1.0000 0.3399 -1.0000 -0.0909 1.17 

6 -1.0000 -0.1111 0.3498 1.0000 -1.0000 1.23 

7 -1.0000 -0.1111 0.2512 1.0000 -1.0000 1.20 

8 -0.7000 1.0000 0.2611 1.0000 -0.8182 1.19 

9 0.0000 0.3333 -1.0000 1.0000 -0.3939 1.17 

10 0.0000 0.3333 0.7833 1.0000 -0.3939 1.18 

11 -0.5000 0.5556 0.5567 1.0000 0.2121 1.19 

12 0.1000 -0.3333 0.7833 0.0000 0.2121 1.20 

13 -1.0000 -0.3333 0.3103 1.0000 -0.6970 1.19 

14 0.0000 -0.3333 0.5271 1.0000 0.2121 1.20 

15 1.0000 -0.3333 0.8719 1.0000 1.0000 1.19 

16 -1.0000 -0.3333 0.2414 1.0000 -0.3939 1.19 

17 0.9000 -1.0000 0.8621 1.0000 0.6970 1.22 

 

All the responses are the mean of 5 replications. For the experimental runs given in Table 2, the 

mathematical model between the factors (Xi) and the response (Y) is calculated using Minitab and given 

in Equation (2) below: 

𝑌 = 1.52042432635235 − 0.803139610746138𝑋1 − 0.98863441454442𝑋2

− 0.718275024626442𝑋3 − 0.121073056266713𝑋4

+ 0.745000089193886𝑋5 − 0.20179481373935𝑋1𝑋2  

+ 0.127855823714148𝑋1𝑋3  + 0.835595470565313𝑋1𝑋4

+ 0.216613510668006𝑋1𝑋5 + 0.153789373540897𝑋2𝑋3

+ 0.908741850081363𝑋2𝑋4  + 0.112013376348068𝑋2𝑋5

+ 0.349433050887672𝑋3𝑋4 − 0.821330505624133𝑋3𝑋5

− 0.287224931918107𝑋4𝑋5 

(2) 
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Coefficient of determination (R2) is calculated as 99.98% (which means these 5 factors are sufficient to 

explain the variation in the plastic sheet thickness. For the ANOVA, P-value approach is used by the 

aid of Minitab. If P-value (=0.047) < Type-I Error Probability (𝛼=0.05 for 95% confidence level) then 

we can conclude that the mathematical model is significant (Mason et al., 2003; Montgomery, 2008; 

Myer et al., 2008). The ANOVA results indicate that the mathematical model is significant and can be 

used for optimization. The “Minitab Response Optimizer” result is presented in Figure 2. The target 

value for the plastic sheet thickness is 1.15 mm according to the firm’s quality standards. The thickness 

being below this value affects the strength of the product; if it is above this value, it causes excessive 

use of raw materials and an increase in costs. The optimum process parameters with coded factor levels 

(red colored values at Figure 2) are calculated as: X1= -0.9, X2= 1.0, X3= 0.3005, X4= -0.1, and X5= -

0.1515. The plastic sheet thickness is expected to be 1.1507 mm (blue colored value in Figure 2) for 

these optimized parameters.  

Cur
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d = 0,30146
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Figure 2. “Minitab Response Optimizer” result 

 

Finally the confirmations are performed and presented in Table 3. Five replications are performed for 

the optimum factor levels and the mean value is calculated as 1.152 mm. According to the results it can 

be clearly indicated that the predicted results are very close to the observed results and the overall 

prediction error percentage (PE(%)) is less than 1%. This obtained thickness value is less then the 

observations given in Table 2 and very close to the target value of 1.15 mm thickness. This means the 

process parameter optimization is completed and these optimized parameter levels can be used in mass 

production.   

 

Table 3. Confirmation 

Response Observed value from the 

production line 

Minitab 

prediction 

PE(%) 

Plastic sheet thickness (mm) 1.152 1.1507 0.06 
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4. Conclusion 

In this study the aim was to obtain 1.15 mm plastic sheet thickness for the semi-product produced by 

the extrusion line. Experimental results are observed from the production line and RSM is used for 

mathematical modeling and optimization. RSM has not been previously used for this factor combination 

to optimize the plastic extrusion process and this is the novelty of this study. Confirmations are 

performed for the optimized factor levels. The results show that the RSM provided good results for the 

extrusion process problem dealt with. 
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Abstract 

The Kundu-Eckhaus equation (KEE) is a nonlinear partial differential equation in the nonlinear 

Schrödinger equation (NLSE) class. This equation was introduced to the scientific literature 

independently by Kundu (1984) and Eckhaus (1986).  It is well-known that KEE admits many different 

analytical solutions like the NLSE. Those solutions of the KEE are widely used in fields such as 

nonlinear optics, fiber optical waveforms, water waves mechanics, and hydraulics, just to name a few. 

In this study, the effect of loss/gain on the soliton solutions of the KEE has been investigated. With this 

aim, we study the dissipative Kundu-Eckhaus equation (dKEE) (Bayındır, et. al, 2021, Yurtbak, 2019). 

We analyze the effects of dissipation in the form of a loss term on the self-localized solitons of the 

dKEE. For this purpose, we propose a Petviashvili’s method (PM) for the numerical construction of the 

soliton solution of the dKEE (Petviashvili, 1976). Using PM, we first numerically compute the soliton 

solutions of the dKEE and discuss their properties. Then, we analyze the effects of dissipation on the 

dynamics and stabilities of those soliton using a split-step Fourier method (SSFM) implemented for 

time-stepping purposes. We show that the dKEE equation admits one and two soliton solutions for zero 

potential and for photorefractive potential (V = 𝐼0𝑐𝑜𝑠2(x)) cases. Since the solitons under the 

photorefractive potentials turned out to be unstable during temporal evolution, we introduce and discuss 

the effects of dissipation on the dynamics and stabilization of those solitons. The effects of dissipation 

on soliton characteristics and power are also discussed. 

Keywords: Dissipative Kundu-Eckhaus equation, Petviashvili’s method, Split-step Fourier scheme, 

solitons. 

 

1. Introduction 

The Kundu-Eckhaus equation is a nonlinear partial differential equation and can be considered as an 

extended nonlinear Schrödinger equation. This equation was introduced to the scientific literature by 

Kundu (1984) and Eckhaus (1987), independently and used in various branches of nonlinear physics 

(Demiray, 2003, Bayındır, et. al, 2021). The Kundu-Eckhaus equation (KEE) admits many different 

types of analytical solutions like the nonlinear Schrödinger equation (NLSE). In this paper, we 

concentrate on the self-localized solitons of the KEE. In order to construct soliton solutions, we extend 

the application of Petviashvili’s method (PM) (Petviashvili, 1976) to KEE and dissipative (dKEE). PM 

transforms the governing the nonlinear equation (Demiray, 2003, Bayındır, et. al, 2021, Yurtbak, 2019, 

Petviashvili, 1976) into Fourier domain and iterates until a convergence criterion is achieved. In this 

paper, we study the effects of dissipation on the one and two soliton solutions of the Kundu-Eckhaus 

obtained via PM. We first construct the soliton solutions of the KEE and under the effect of dissipation, 

we perform their time   stepping by split-step Fourier method discussed in (Bayındır, et. al, 2021, 

Yurtbak, 2019). We discuss the effects on various terms of the dKEE and their effects on the soliton 

dynamics. We comment on our findings and discuss the implementation and limitations of our work. 
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2. Mathematical Formulation 

The dissipative Kundu-Eckhaus equation (dKEE) can be written as                        

𝑖
𝜕𝑈

𝜕𝑡
+ 𝜇1

𝜕2𝑈

𝜕ξ2 + 𝜇2|𝑈|2𝑈 + 𝑖𝜇3𝑈 + 𝜇4
2|𝑈|4𝑈 − 2𝜇4𝑖(|𝑈|2)ξ𝑈 = 0,                                                   (1) 

where U is the dependent variable, t is the time and ξ is the space parameter. In this equation, the 

parameter 𝜇1 is the dispersion constant, the parameter 𝜇2 is the cubic nonlinearity constant and the 

parameter 𝜇4 is the quintic-non linearity and Raman scattering constant. The parameter 𝜇3 controls the 

dissipation (Demiray, 2003). Solutions of the dKEE are constructed by applying SSFM and PM in our 

previous research (Bayındır, et. al, 2021, Yurtbak, 2019).  In order to discuss the effects of potentials, 

we subtract photorefractive potential term VU form the left hand side of the dKEE use V = 𝐼0𝑐𝑜𝑠2(x) to 

represent a photorefractive potential. The PM iteration scheme can be obtained by transforming Eq.1 

into Fourier domain, however, it is well-known that such iterations schemes diverge. Thus, to prevent 

such a instability we can add or subtract a pη term with p> 0 to the 1D Fourier transform of Eq.(1). We 

accepted p = 10 throughout this paper. After these operations, we obtain the formula as below  

�̂�(𝑘) =  
(𝑝+|𝜇|)�̂�

𝑝+𝜇1|𝑘|2
− 

𝐹[𝑉𝜂]−𝐹[𝑁(|𝜂|2)𝜂]

𝑝+ 𝜇1|𝑘|2
                                                                                                (2) 

where V is the potential term. As before, the iterations of Eq. (2) may be unbounded or it may tend to 

zero (Bayındır, et. al, 2021). Thus, we introduce a new variable by introducing a new variable as  

η(ξ)=α𝜙(ξ) and its Fourier transform as η(k) = α𝜙(k), to come through this problem. With this change 

of variables, Eq. (2) can be rewritten as                               

�̂�(𝑘) =  
𝐹[𝑁|𝛼|2|𝜙|2𝜙]

𝜇+ 𝜇1|𝑘|2
= 𝑅𝛼[�̂�(𝑘)]                                                                                                                       (3) 

and corresponding iteration scheme becomes    

�̂�𝑗+1(𝑘) =  
𝐹[𝑁(|𝛼𝑗|

2
|𝜙𝑗|

2
|)𝜙𝑗]

𝜇+ 𝜇1|𝑘|2
                                                                                                                                  (4) 

where μ is the soliton eigenvalue, α is an algebraic condition to control the convergence of the PM. This 

algebraic condition is basically an energy conservation principle. We multiply the both sides of Eq. (4) 

with 𝜙 ̂ ∗(k), where the sign * refers to complex conjugation, and the total energy can be calculated as 

∫ |�̂�(𝑘)|2
+∞

−∞
𝑑𝑘 = ∫ �̂�∗(𝑘)𝑅𝛼[�̂�(𝑘)]𝑑𝑘

+∞

−∞
                                                                            (5) 

The Eq. (5) is the normalization constraint of the PM algorithm which is summarize above and can be 

find the self-localized solitons of the dKEE with the potential term starting with single or multi-

Gaussians. We present our results for the dKEE in the next section.   

 

3. Results and Discussion 

3.1. Single soliton Dynamics 

In Fig.1, spatial profile of the single soliton solution for various 𝜇1  is given and the direction of 

parameters on the figures is depicted. For our simulations we used N=1024, α=10−10 for the 

construction of the single soliton solutions. After, we repeat similar steps for 𝜇2 and 𝜇4. The parameters 

of the potential term are selected as  𝐼0=2.5 where the photorefractive potential terms is calculated by  V 

= 𝐼0𝑐𝑜𝑠2(x) throughout this paper. As illustrated in Fig. 1, the parameter 𝜇1 controls the shape of the 

soliton.  
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Figure 1. Self-localized single soliton solution as a function of ξ for various 𝜇1 values with 

photorefractive potential. 

 

In Fig. 2 illustrates the power of the soliton as a function of soliton eigenvalue with photorefractive 

potential. The computational parameters are selected as α =10−7, N =1024, 𝜇1= 1, 𝜇2=2 and 𝜇4= 2/3, 

𝑝= 10, 𝐼0= 2.5 as before. Clearly, solitons satisfy the Vakhitov-Kolokolov stability criteria, however, it 

is not a sufficient condition. 

 

Figure 2. Self-localized single soliton solution power as a function of soliton eigenvalue, μ with 

photorefractive potential. 

Figure 3. Self-localized single soliton solution power as a function of time under no dissipation, 𝜇3= 0 

with photorefractive potential. 
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In order the assess the temporal stability, we implement a split-step Fourier scheme and starting from 

the soliton solutions we perform time stepping. We simulate a numerical solution for single soliton for 

N=1024, α=10−7, μ=1. In Fig. 3, we depict single soliton power as a function of time and in Fig. 4 we 

depict single soliton power as a function of time for various dissipation parameters and we plot a 

constant power line. It is clear that, the unstable soliton of the KEE can be stabilized by dissipation. All 

values which are under the constant line is stabilizes the for single soliton solution for the range of time 

considered. We can specify the best value as 𝜇3=0.01 and we depict the single soliton solution at two 

different times (t= 0 and t=40) in Fig.5 which are under the effect of the photorefractive potential. We 

depict the real, imaginary and absolute values of U for 𝜇3=0.01. 

Figure 4. Self-localized single soliton solution power as a function of time for various dissipation 

parameter, 𝜇3 with photorefractive. 

 

Figure 5. Self-localized single soliton solution at two different times t = 0 and t = 40 for 𝜇3=0.01 with 

photorefractive potential; a) Real part of  U,  b) Imaginary part of  U,  c) Absolute value of  U. 

 

3.2 Two soliton Dynamics 

Starting from the two Gaussian initial conditions and following similar steps, we construct the two 

soliton solution with photorefractive potentials. In Fig. 6, the two soliton solution is depicted as a 

function of spatial parameter for various 𝜇1 and the direction of increasing 𝜇1 is marker. The 

computational parameters are selected to be N=1024, α=10−5 and 𝜇3=0. The simulations are repeated 

for various values of 𝜇2 and 𝜇4 and given in (Yurtbak, 2019). 
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Figure 6. Self-localized two soliton solution as a function of ξ for various 𝜇1 values with 

photorefractive potential. 

 

Trend of the power of the two soliton solutions as a function of soliton eigenvalue under the effect of  

photorefractive potential turned out to be similar to Fig.2 and Fig.3 of the single soliton case and for the 

sake of brevity of the presentation is not depicted here.  For details, the reader is referred (Yurtbak, 

2019).  

Figure 7. Self-localized two soliton solution power as a function of time for various dissipation 

parameter, 𝜇3 with photorefractive potential. 

 

Lastly, we provide a function for various values of dissipation in Fig. 7. We obtain a time-power function 

of the two soliton in Fig.7 and investigate behavior of the function under dissipation. A closer inspection 

of Fig.4 and Fig.7 reveals that with no dissipation power grows unboundedly causing unstable behavior 

(Yurtbak, 2019). The values of 𝜇3, which lead to lines under the constant line can be used to stabilize 

solitons of the KEE for the temporal range considered. We specify best value for numerical solution and 

simulate the temporal dynamics for 𝜇3= 0.01. In this way, using the split-step time stepping algorithm 

we produce Fig. 8. This figures compares the initial and final profiles at two different times (t=0 and 

t=40) for the dissipation parameter of 𝜇3=0.01. Although some splitting is observed in the crest of the 

soliton, the base of the soliton is well-preserved, which is beneficial for many engineering purposes. 
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Figure 8. Self-localized two soliton solution at two different times t=0 and t=40 for 𝜇3= 0.01 with 

photorefractive potential; a) Real part of U, b) Imaginary part of U, c) Absolute value of  U. 

 

4. Conclusion 

In this study, we have studied the effects of dissipation on the self-localized solitons of the KEE. We 

implemented a Petviashvili method to construct the single soliton and two soliton solutions of the KEE. 

We have showed that the unstable single and two soliton solution of the KEE with nonzero optical 

potentials, i.e V≠0 for V= 𝐼0𝑐𝑜𝑠2(x) type photorefractive potential can be stabilized by imposing 

dissipation. We discussed the effects of the strength of the dissipation term on soliton dynamics. Our 

results can be used in the derivation of the numerical N-soliton solutions of KEE under dissipation. 

Possible application areas include but are not limited to dissipative optical media, dissipative 

hydrodynamic media such as the ocean exposed to oil spill and other dissipative media in matter physics 

and Bose-Einstein condensation. 
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Abstract 

Multiple testing procedures are very popular in recent years due to the huge amount of data in genetics, 

engineering and finance. In order to construct proper models for those data, different approaches are 

suggested. More recently, the conditional randomization tests (CRT) are proposed while there is no 

distributional assumption about the model. On the other hand, the hold-out-randomization test is 

suggested by using both bootstrap and cross validation algorithms. Moreover, the Model-X knock-off 

filter is applied for causal models with Genome-wide studies. Hereby, in this study, we investigate the 

computational cost and statistical properties of the random forest model which is one of the well- known 

causal regression approaches. In our analyses, we detect its accuracy by using two distinct model 

selection criteria, namely, Bozdogan‘s  Consistent Akaike information criterion with Fisher information 

matrix (CAICF) and Information and COMPlexity (ICOMP) criterion . We evaluate the performance of 

the underlying extended model via protein- protein interaction networks’ and simulated datasets under 

different dimensions and compare the results via the original random forest model.   

Keywords: Causal models, multiple testing, model selection, random forest algorithm 

 

1. Introduction 

Traditionally, Causal models have a crucial role to find relationship between dependent variables.  On 

the other hand, Candes et al.(2018) suggested that the conditional randomization test, in particular, when 

we do not know the conditional distribution of variables is very useful to construct the model. However, 

this testing  procedure can be computationally demanding for high dimensional causal regression. For 

this reason, we use the random forest method to propose more computationally efficient selection 

procedure by the CRT. Moreover, in modern statistical applications, it is very important to decide on 

the relationship between variables and causal models are very useful models for this purpose, 

particularly, in Genome wide studies (GWAS). In general, these models are used in broad range 

application such as genetics, epistemology and time series analysis. More recently, the covariance 

properties of those are studied by Shah et al. (2020a). More importantly, the kernel conditional 

independence tests with an application causal discovery was studied by Zhang et al.(2011) and Pfister 

et al. (2017).   On the other side, Shah and Peters (2020b) showed that the conditional independence test 

can be very hard without knowing the conditional distribution of (X,Y,Z). Indeed, Candes et al. (2018)   

already proposed the conditional randomization tests for logistic regression. The randomization test is a 

special case of statistical significance test where the distribution of the test statistic under the null 

hypothesis is calculated for all possible values of the test statistic.  

On the other hand, to make randomization experiments can be challenging, in particular, when the 

number of random variable (p) is bigger than the number of observation (n). Thus, we use the random 

forest algorithm for causal models to suggest computationally accurate model selection procedure. 

Random forest algorithm is introduced by Breiman (2001) and widely applied for different classification 
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and regression purpose. Moreover, random forest methods are an ensemble method which use decision 

trees and it is a special type of Bagging (Bootstrap aggregating) method. Additionally, it uses a random 

subset of features. Thus, it is known a variance reduction technique and reduces the Mean Square Error 

(MSE). Recently, Wager and Athey (2018) and Athey et al. (2019) proposed a novel type of random 

forest algorithm for causal models.  

On the other side, the selection of optimal model among alternatives is another common problem in 

many modelling approaches. Because of the high dimension with respect to the sample size, various 

model selection criteria have been developed for both parametric and non-parametric models. AIC, BIC 

and StaRS are some well- known alternatives. Information and complexity (ICOMP) selection criterion 

is an another strong candidate to select the best model in causal models since Deniz et al. (2011) 

introduced ICOMP selection criterion for structural equation modelling with mixed and categorical data. 

Furthermore, Bülbül et al. (2019) and Kaygusuz and Purutçuoğlu (2019)  suggested Consistent AIC 

with Fisher information matrix (CAICF) and ICOMP selection criteria for Gaussian graphical models 

in the low and high dimensional settings. Then, Kaygusuz and Purutçuoğlu (2021)  proposed the non-

parametric and bayesian bootstrap procedure for Gaussian graphical models to improve CAICF and 

ICOMP selection criteria for high dimensional data. In this study, we compare CAICF and ICOMP 

selection criteria when the random forest algorithm is implemented as causal models.  

Thereby, the  organization of the paper is as follows: The second section includes the definition of 

Candes et al.(2019) conditional randomization test, the mathematical representation of causal models.   

Random forest algorithm and CAICF and ICOMP criterion are given in the third section. Finally, we 

present data analysis and conclusion in the fourth and the fifth section respectively.  

2. Theory and Methods 

2.1 Conditional randomization test 

The conditional randomization tests (CRTs) are introduced by Candes et al. (2018) without any 

assumption of dependent variable Y. They merely assume that the conditional distribution of (X,Y,Z) is 

known. Whereas the detection of the conditional distribution can be challenging, in particular, for high 

dimensional data. Thus, it is accepted that the conditional distribution of X|Z is known and Q(.|Z) shows 

the distribution of X given Z = z, conditional on Z1, . . ., Zn. The CRT generates the X values from data 

sets which have the following distribution :  𝑋 1
(1)

 ∼  𝑄(. | 𝑍𝑖
 ), where it is obtained independently from 

every i = 1, . . . , N and independently from real values of Xi’s and Yi’s. According to the null hypotheses 

in equation, one can write   

(X|Y=y,Z=z) =
d 

(X|Z=z) ∼ Q(.|z). In here, =
d 

indicates the equality in distribution. Hence, we can write 

the above  equation as follows. 

 (𝑋  
(1)

, 𝑌, 𝑍) = (𝑋, 𝑌, 𝑍)   for all  (𝑋  
(1)

=  𝑋 1
(1)

, … ,  𝑋 𝑛
(1)

 by  𝐻0
 .                                                          (1)  

If we have a difference between two sides of equation, we can reject H0. In order to obtain the test value 

of null hypotheses, we need to repeat this steps (k) times. On the other side,  (𝑋 𝑖
(𝑘)

|𝑋, 𝑌, 𝑍) ∼   𝑄( . |𝑍 𝑖
 ) 

is obtained independently for i = 1, . . ., N and k = 1, . . ., K. In this expression, we assume that the 

conditional distribution of  (𝑋, 𝑌, 𝑍), (𝑋  
(1)

, 𝑌, 𝑍), … ,  (𝑋  
(𝑘)

, 𝑌, 𝑍)  are identically distributed and ex-

changeable by the null hypotheses. For this reason, any statistics of T(X,Y,Z) is also exchangeable too 

as follows:  𝑇(𝑋, 𝑌, 𝑍), 𝑇(𝑋  
(1)

, 𝑌, 𝑍), … ,  𝑇(𝑋  
(𝑘)

, 𝑌, 𝑍). In this representation, we can give the algorithm 

to compute CRT as below: The datais referred as (Xi,Yi) where X is independent variable and Y is 



2nd International Conference on Applied Mathematics in Engineering (ICAME’21)  

September 1-3, 2021 - Balikesir, Turkey 

 

52 

dependent variable for i = 1,...,n observations. Moreover, T(X,Y,Z) is a test statistics to test conditional 

relationship between X and Y k ∈ (1,...,K) copies the sample  𝑋  
(𝑘)

 𝐿(𝑋 𝑖
 ,  𝑌 𝑖

 )  for all i to compute 

  𝑇(𝑋  
(𝑘)

, 𝑌, 𝑍) . Hence, the p-value is computed as p =
{1+∑ 1 𝐾

𝑘=1 }  {𝑇(𝑋  
(𝑘)

,𝑌,𝑍)≥𝑇(𝑋,𝑌,𝑍)}

1+𝐾 
. Here, the p-

values are obtained by true X vector against the values of the CRT copies.     

2.2 The Mathematical Representation of Causal Models  

Let us define random variables X1, ..., Xp for graphical models as a pair G, L(X) where L(X) = L(X1,..., 

Xp) is a joint distribution for a directed acyclic graph. Then, we define S = (S1,.., Sp ) for p equations as 

  𝑆𝑗:   𝑋𝑗 =   𝑓𝑗 (  𝑋  𝑃𝐴𝑗
,   𝑁𝑗) ,             (𝑗 = 1,… , 𝑝) ,where L(N) = L(N1,.., Np) are the noise variables and 

PAj indicates the parents of j. We assume that the noise terms are jointly independent and L(N) is a 

product distribution. Moreover, causal models are obtained via directed edges from each variables Xk,  

for k ∈ PAj.    

  𝑋𝑗 = ∑    𝛽𝑗𝑘  𝑋𝑘 +   𝑁𝑗
 
𝑘∈𝑃𝐴𝑗

.      (j=1,..,n)   𝑘 ∈ 𝑃𝐴𝑗                                                                            (2) 

In Equation 2, Nj ‘s are independent identically distributed according to N(μ, σ2) and for each j ∈

{1, . . , 𝑛} it must be  𝛽𝑗𝑘  ≠ 0 for all  k ∈  𝑃𝐴𝑗.   

3. Proposed Method 

3.1 Random Forest Algorithm  

Random forest algorithm is introduced by Breiman (2001) and is widely used to solve regression or 

classification problems in different scientific domains such as economics, genetics, engineering. This 

algorithm provides a collection of decision trees, and each tree in the ensemble is comprised of a data 

sample obtained from a training set with replacement, called the bootstrap sample. In the bootstrap 

training sample, one-third of it is taken as test data, known as the out-of-bag sample. The individual 

decision trees can be averaged when we study a regression assignment. As an advantage of random 

forest algorithm, it reduces the variance and prediction error. But, it can suffer from the computational 

cost to compute each individual tree. Hereby, we can summarize the procedure for the random forest 

algorithm as follows: Step1:Generate pairs  (𝑋𝑖  ,   𝑌𝑖  ) i= 1,...,n  where  Xi ∈Rd indicates independent 

variable and Yi ∈ R is a response variable.Calculate (𝑋1,   𝑌1) , . . . ,    (𝑋𝑛,   𝑌𝑛) pairs. 

Step 2:Conduct bootstrap sample (𝑋1
∗,  𝑌1

∗) ,..., (𝑋𝑛
∗ ,  𝑌𝑛

∗) which is obtained randomly drawing n times 

with replacement from the data (  𝑋1,   𝑌1) , . . . ,    (𝑋𝑛,   𝑌𝑛). 

Step 3:Repeat step 1and 2 for B times to obtain the random forest estimator as follows 

µ̂𝑅𝐹=
1

𝐵
  ∑  𝐵 

𝑗=1  (µ̂𝑗
 

 
(𝑋) )).   

3.2 Consistent AIC and ICOMP Selection Methods  

The model selection is the problem of selecting one from among a large set of candidate computational 

models. The two most common likelihood model selection methods are Akaike (1973) and Schwarz 

(1978) criteria. Akaike information criterion (AIC) uses the Kullback-Leibler divergence and the 

maximum likelihood approach to find the best model and it is described basically a penalized version of 

the attained maximum log-likelihood for each candidate model. Schwarz criterion is known as Bayesian 

information criterion (BIC) and has a form of the penalized log-likelihood function too, but, it works 

with Bayesian prior and it has a strong penalty for additional parameters with respect to AIC. In the 

literature, some extensions of AIC are used to select the right model more consistently with additional 
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penalty terms. Three of those extended selection criterions are proposed by Bozdoğan (1987 and 2010). 

We call these selection methods as an extended AI’s and our purpose is to propose more consistent 

model selection as an extension of these selection criteria. Accordingly, these AIC based criteria propose 

to calculate a metric distance between the model and the true distribution in a such a way that a consistent 

inference method can make this distance as small as possible. In the study of Bozdoğan (1987), the 

Kullback- Leibler divergence is applied and this criterion is named the consistent AIC (CAIC) whose 

expression as below :   

𝐶𝐴𝐼𝐶(𝑘) = −2 log 𝐿(𝜃𝑘) + 𝑘[𝑙𝑜𝑔𝑛 + 1],                                                                                            (3)  

where the likelihood of θ is shown by log L(𝜃𝑘 ) and k is the degrees of freedom of the distribution. We 

can see similarity between CAIC(k) and BIC of k log n and k[log n + 1], respectively by suggesting a 

stronger penalty term. This penalty term makes a difference while finding in a more parsimonious model 

than AIC and BIC. Here, log n + 1 provides the consistency of the model selection.  

Another Bozdogan ‘s selection criterion is based on the Consistent AIC with Fisher information 

(CAICF(k)). The method has an increasing penalty term for the over-parametrization whose expression 

is presented as below.  

CAICF(k) = −2 log L(𝜃𝑘) + k[log n + 2] + log |I(𝜃𝑘)|.                                                                          (4)  

In here, log L(𝜃𝑘 ) indicates the likelihood estimation of θ, as used before, k is the degrees of freedom 

of the distribution and I(𝜃𝑘) �̂�−1 denotes the Fisher information matrix. AIC and BIC have some 

limitations when the number of variables (p) is greater than the number of observations (n). For this 

reason, Bozdoğan (2010)  suggest the Information and COMPlexity (ICOMP) for the covariance matrix. 

This new criterion can penalize the free parameters and the covariance matrix directly in the same time 

with a third term.This third term in the loss function can calculate the distance when parameter estimates 

are correlated with the model fitting stage. Below, the equation of ICOMP criterion is represented as 

follows.  

 𝐼𝐶𝑂𝑀𝑃 = −2 log 𝐿(𝜃𝑘) + 2𝐶(�̂�  )                                                                                                       (5)  

in which log L(𝜃𝑘 ) is the log-likelihood of E, 𝜃𝑘 shows the maximum likelihood estimate of the 

parameter vector of θk , C indicates a real-valued complexity measure and �̂� = 𝑐𝑜�̂�(𝜃𝑘)  denotes the 

estimated covariance matrix of the parameter vector of the candidate model. This covariance matrix 

might be obtained in different ways. Bozdoğan (2010)’s choice is the computation of the inverse of the 

Cramer-Rao lower bound matrix. In our paper, the estimated inverse Fisher information matrix (IFIM) 

of the model can make more consistent accuracy of the parameter estimation as �̂�−1 =

{−𝐸 (
𝜕2𝑙𝑜𝑔𝐿(𝜃)

𝜕𝜃𝜕𝜃′ )}
−1

. In this expression, the (s × s)-dimensional second-order partial derivatives of the 

log-likelihood function of the estimated model is denoted by �̂�−1 and ∂ stands for the partial denotation 

of the given function. Finally, a more general form of ICOMP can be denoted as the following way:                                                

 𝐼𝐶𝑂𝑀𝑃 = −2 log 𝐿(𝜃𝑘) + 2𝐶(�̂�−1) when 𝐶(�̂�−1)=
𝑠

2
log [

𝑡𝑟�̂�−1

𝑠
] −

1

2
log |�̂�−1|. The second term shows 

that the information complexity of the estimated inverse Fisher information matrix of the model and 

𝑠 = dim (�̂�−1) = 𝑟𝑎𝑛𝑘(�̂�−1) while dim(.) shows dimension of given matrix.  

4. Results and Discussion 



2nd International Conference on Applied Mathematics in Engineering (ICAME’21)  

September 1-3, 2021 - Balikesir, Turkey 

 

54 

We have two simulated datasets. In this first data, the number of observations (n) is 60 while the number 

of variables (p) is 100 and in the second data, the number of observations (n) is equal to 20 while the 

number of variables (p) is 100 as a large and moderate network structure whose topologies are scale-

free. We have applied conditional randomization procedure for causal models in both data. For the first 

dataset, the CRT algorithm selected the 1st, 2d, 3rd, 5th, 8th, 11th, 14th, 19th, 31st, 32rd, 38th, 65th, 

73rd, 78th, 84th, 98th variables, which is totally 16 variables among 100. For the second data set, the 

CRT algorithm chosen the 1st, 2nd, 3rd, 9th, 11th, 12nd, 14th ,17th, 21st, 26th, 28th , 30th, 41st, 42nd, 

43th, 46th, 55th, 59th, 61th, 65th, 74th, 81st , 82nd, 87th, 88th, 92nd, 95th  variables, which is totally 27 

variables among 100. After deletion of variables obtained by CRT, we conducted random forest 

algorithm whose results are seen in the above tabulated values. The findings indicate that CRT is 

promising, specifically, under CAICF approach with significant increases in accuracy and F-score. On 

the other side, ICOMP is invariant to the CRT procedure.  

Table 1: Accuracy and F-scores of ICOMP and CAICF w/o random forest algorithm. 

Data  Measures  ICOMP 

without 

random forest  

ICOMP  

with random 

forest 

CAICF 

without  

random forest   

CAICF with 

random forest  

Dataset 1 

n = 60, p = 100  

Accuracy  

F-score    

0.182 

0.308 

0.182 

0.308   

0.364 

0.533 

0.455 

0.625 

Dataset 2 

n = 20, p = 100 

Accuracy  

F-score    

0.159 

0.266 

0.159 

0.266  

0.182 

0.308  

0.365 

0.534  

       

5. Conclusion 

We have proposed an alternative model selection procedure for causal model using with Bozdoğan`s 

CAICF and ICOMP selection criteria. However, when the numbers of parameters (p) are more than the 

number of observations (n), model selection procedure can be challenging. For this reason, we have 

suggested random forest algorithm for causal models to propose more consistent model selection 

procedure. Before this algorithm, we have applied Candes et al. (2018)`s conditional randomization test 

for causal models. According to real datasets results, we have seen an improvement in accuracy of causal 

models for CAICF. On the other hand, we have to conduct more comprehensive simulation analysis 

with the proposed model selection procedure for the different scales, the number of observations and 

the number of variables. As a future work, we can also use different types of algorithms such as boosted 

random forest algorithm to improve the accuracy of causal models. Furthermore, causal models with an 

application to survival analysis are very attractive research area to investigate computational efficiency 

of random forest algorithm.       
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Abstract 

The paper concerns the optimization of partial differential inclusions of the parabolic type given by 

polyhedral set-valued mappings. We derive the optimality conditions for the problems under 

consideration by employing the result of the discrete approximation problem associated with the 

continuous problem.  We formulate the sufficient conditions by passing formally to the limit as the 

discrete steps tend to zero in the discrete approximation problem. We consider some linear optimal 

control problems to demonstrate the above approach. 

 

Keywords: Partial differential inclusions, polyhedral optimization, optimality conditions 

 

1. Introduction 

Several areas involving optimal control problems described by ordinary and partial differential 

equations and/or inclusions have advanced significantly in the last decade. Variational analysis of partial 

differential inclusions is performed using discrete approximations and advanced generalized 

differentiation methods to provide new optimality conditions of the Euler-Lagrange and Hamiltonian 

types. Several mathematical studies of parabolic equations and inclusions have been conducted, 

motivated by mathematical and physical problems (Cheng et al., 2011). The optimality conditions 

obtained by Mahmudov are more exact since they involve usable forms of the Weierstrass-Pontryagin 

conditions and Euler-Lagrange type of inclusions (Mahmudov, 2021a, 2021b, 2021c). Many of the 

necessary and sufficient conditions for optimality for partial differential inclusions presented by 

Mahmudov in his survey studies eventually necessitate the development of new types of equivalence 

results.  In the paper (Mahmudov, 2008, 2009), sufficient conditions of optimality for parabolic 

differential inclusions are derived, and duality theorems are proven. We use difference approximations 

of partial derivatives and grid functions on a uniform grid in this study to approximate the problems 

under review. We obtain the necessary and sufficient optimality condition for a discrete-approximate 

problem associated with the continuous problem. Then, we formulate sufficient conditions of optimality 

for convex problems with partial differential inclusions by formally passing to the limit as the discrete 

steps tend to zero in the discrete approximation problem. Later, we look into the differential problem 

for several types of set-valued mapping, such as polyhedral mapping.  We calculate the LAM(locally 

adjoint mapping) for the polyhedral set-valued mapping and prove sufficient conditions of optimality 

for polyhedral problems with partial differential inclusions. At the end of the section, a linear optimal 

control problem is discussed. 

 

The essential properties and definitions of convex analysis structures used in this paper can be found in 

Mahmudov (2011) and Mordukhovich (2006). As usual, 
n

 is an n -dimensional Euclidean space, 
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,x v   is the inner product of elements , nx v  and ( , )x v is a pair of ,x v . A set-valued mapping 

: nF →
→

n
 is convex if its graph gph ( , ) :F x v=  ( )v F x  is convex in

2n
. And F is convex 

valued if ( )F x  is a convex set for each  : ( ) .x domF x F x =    Moreover, we introduce the 

Hamiltonian function and the notation of the argmaximum set for a set-valued mapping, respectively

 * * *( , ) sup , : ( ) , ;n

F
v

H x v v v v F x v=    * * *( ; ) ( ) : , ( , )A FF x v v F x v v H x v=  = . For a 

convex set-valued F , we let
*( , )FH x v = + , if ( ) .F x =    

 

A convex cone 0( )AK z  is called the cone of tangent directions at a point 0 0

0 ( , )z x v A=   if from 

0( , ) ( )Az x v K z=   it follows that z  is a tangent vector to the set A , i.e., there exists a function 

2( ) n   satisfying 0 ( )z z A  + +  for sufficiently small 0  , where  
1 ( ) 0  − → ,  as 

0  .  Evidently, for a convex set A  at a point ( 0 0,x v )  A setting ( ) 0    we have AK ( 0 )z

( ) 0 0, : ( ), ( ), 0x v x x x v v v  = = − = −  , ( ,x v )  A . As usually, * 0 0( , )AK x v  is the dual 

cone to a cone of tangent vectors 
AK ( 0 0, ).x v A set-valued mapping 

*( ;( , )) : nF x v n
defined 

by ( )  * * * * * *;( , ) : ( , ) ( , )gphFF v x v x x v K x v= −  is called the locally adjoint mapping (LAM) to F  at 

a point ( , )x v  where 
* ( , )gphFK x v  is the cone dual to the cone gph ( , )FK x v .  

 

This paper is about the polyhedral optimization of parabolic partial differential inclusions. In related 

problems, we examine the main properties of polyhedral mappings in depth (Demir Sağlam et al., 2020, 

2021a, 2021b, 2021c, 2021d). A polyhedral convex set in  
n

 is a set that can be expressed as the 

intersection of some finite family of closed half-spaces. In particular, if the finite system of inequalities 

is homogeneous, the set of solutions to this finite system of inequalities is called the polyhedral cone.  

2. Problem Definition 

At first, we study the convex problem of partial differential inclusions of the parabolic type: 

minimize ( )[ ( , )] ( , ), ,
D

I u f u x t x t dxdt  =  ,                                                   (1)

( )
2

2

( , ) ( , )
( , ), ,

u x t u x t
F u x t x t

x t

 
− 

 
 , ( , )x t D ,                                          (2)

   0 0 1(0, ) ( ), ( ,0) ( ), (1, ) ( ), 0,1 0,1u t t u x x u t t D  = = = =  ,                (3)             

where ( ), , : nF x t →
→

n
 is a convex set-valued mapping, ( ), ,f x t  is proper  convex function and   

 0 : 0,1 ,n →   : 0,1 , ( 0,1)n

i i → =  are absolutely continuous functions.  

The problem is to find a classical solution ( , )u x t  of the so-called first boundary value problem (1)-(3) 

that minimizes the functional I  over a set of feasible solutions. For convex problem (1)-(3), a feasible 

solution is understood as an absolutely continuous function satisfying almost everywhere (a.e.) the 

partial differential inclusions (2) in    0,1 0,1D =   and the boundary conditions (3). It should be noted 

that the definition of a solution in one sense or another (classical, generalized, etc.) does not in any way 

→
→
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restrict the class of problems under consideration. Let us denote ( ) ( )0,1 0,1 =  , 

( ) ( )  ( ) ( ) 0 0, : 0,1 ,0 : 0,1t t x x =    , ( ) ( ) 1, : 0,1t t =  . A function belonging to the space 

( ) ( )1,2 1

0C C      satisfying differential inclusion (2) in  , initial conditions 

0 0(0, ) ( ), ( ,0) ( )u t t u x x = = , and boundary conditions 1(1, ) ( )u t t=  in 0 and  respectively,  

we call a classical solution. Here ( )1,2C   is the space of functions  ( , )u x t  having continuous 

derivatives
2

2

( , ) ( , )
,

u x t u x t

x t

 

 
. 

3. Main Results on Optimality Conditions of Partial Differential Inclusions 

We use the result of the discrete approximation problem connected with the continuous problem to 

construct the optimality conditions for the problems under study. In the discrete approximation problem, 

we construct the sufficient conditions by passing formally to the limit as the discrete steps tend to zero. 

Since the construction of the Euler-Lagrange inclusion as well as transversality conditions are 

complicated by the accompaniment of discrete and discrete-approximation problems, we give only the 

final result. 

Theorem 3.1 Suppose that ( , , )f x t  is continuous convex proper function and ( ), , : nF x t →
→

n
 

is a convex set-valued mapping. Then for the optimality of the solution ( , )u x t  in the problem (1) –(3) 

it is sufficient that there exists a classical solution 
*( , )u x t  such that the conditions (a) – (c)  hold almost 

everywhere on D : 

(a)     
2 * * 2

* *

2 2

( , ) ( , ) ( , ) ( , )
( , ); ( , ), , ,

u x t u x t u x t u x t
F u x t u x t x t

x t x t

     
+  −  

     
( )( , ), ,f u x t x t− , 

(b)      
*(1, ) 0u t = , 

*( ,1) 0u x = , 
*(0, ) 0u t = , ( ),x t D . 

The following condition guarantees (Theorem 2.1 Mahmudov (2011)) that the LAM 
*F  is nonempty:  

(c)     ( )
2

*

2

( , ) ( , )
( , ); ( , ), ,A

u x t u x t
F u x t u x t x t

x t

 
− 

 
. 

We used this approach to a particular case; the construction of further applications will be a topic for 

further research. Later on, we investigate the differential problem for the different particular cases of 

set-valued mapping F .  Let us consider the “polyhedral” problem (1)-(3), where a polyhedral set-valued 

mapping F is defined as follows ( )  :F w v Pw Qv d= −  . Here ,P Q  are m n  dimensional 

matrices, d is a m -dimensional column-vector. It follows from the inclusion (2) that 

( )
2

2

( , ) ( , )
,

u x t u x t
Pu x t Q d

x t

  
− −  

  
, ( ),x t D .                                                                         (4) 

For the polyhedral set-valued mapping, we need to calculate the LAM 
*F .  On the definition of cone 

of tangent directions ( ) ( ) ( ) ( ), , : , ,gphFK w v w v w v w v gphF= +  for sufficiently small 0 . 
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For a point ( ),w v gphF , we put ( )  , : , 1, ,i i

iI w v i P w Q v d i m= − = = where ,i iP Q be the i -

th row of the matrices  ,P Q  respectively and  id  be the i -th component of the vector d . By using 

Farkas Theorem 1.13 Mahmudov (2011), we have ( ) ( )* *, ,gphFw v K w v  if and only if

( )

* *

,

i

i

i I w v

w P 


= −  , 
( )

* *

,

,i

i

i I w v

v Q 


= −  0i  , where 
* *,i iP Q   are transposed vectors of ,i iP Q

respectively. Now setting 0i = , ( , )i I w v  and denoting by   the vector column with components i

, we obtain that the polyhedral dual cone is calculated by the formula 

 ( ) ( )* * * * * * *, , : , , , 0,gphFK w v w v w P v Q Pw Qv d  = = − =  − −  =  0 .                               (5) 

 Moreover, for the polyhedral LAM from the definition, we have 

( )( ) * * * * *; , :, , , 0,F v w v P v Q Pw Qv d  = − = −  − −  =  0 .                                                (6) 

By Theorem 3.1 and using the formula (6), we have 

( )
2 * *

*

2

( , ) ( , )
( , ) ( , ), ,

u x t u x t
P x t f u x t x t

x t


 
+ + −

 
,  

* *( , ) ( , ), ( , )u x t Q x t x t D= −  , 

( )
2

2

( , ) ( , )
, , ( , ) 0

u x t u x t
Pu x t Q d x t

x t


  
 − − −  = 

  
, ( , ) 0.x t                                                (7) 

Theorem 3.2 Suppose that ( , , )f x t  is continuous convex proper function and ( ), , : nF x t →
→

n
 

is a polyhedral set-valued mapping. Then for the optimality of the solution ( , )u x t  in the polyhedral 

problem it is sufficient that there exists ( , )x t  such that the conditions (i) – (iii) hold almost everywhere 

on D : 

(i)     
2 * *

*

2

( , ) ( , )
( , )

Q x t Q x t
P x t

x t

 


 
+ − 

 
( )( , ), ,f u x t x t , 

(ii)      (1, ) 0t =  , ( ,1) 0x =  , (0, ) 0t =  , 

 (iii)      ( )
2

2

( , ) ( , )
, , ( , ) 0

u x t u x t
Pu x t Q d x t

x t


  
 − − −  = 

  
, ( , ) 0.x t   

Example 3.1 We consider some linear optimal control problems to demonstrate the above approach 

minimize  ( )[ ( , )] ( , ), ,
D

I u f u x t x t dxdt  =   

2

2

( , ) ( , )
( , ) ( , )

u x t u x t
Au x t Bw x t

x t

 
− = +

 
, ( , ) , ( , )w x t U x t D  ,                                                (8) 

 0 0 1(0, ) ( ), ( ,0) ( ), (1, ) ( ),u t t u x x u t t  = = = where A  and B  are n n  and n r  matrices,  
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respectively, 
rU    is a convex closed set, and f  is continuously differentiable function of u . It is 

required to find the controlling parameter ( , ) , ( , )w x t U x t D   such that the corresponding solution 

( , )u x t minimizes [ ( , )]I u   . In this case, ( )F u Au BU= + . By elementary computations for 

v Au Bw= + ,  we find that 

 

 

** * * *

* *

** *

, cone( ) ,
( , ( , ))

    ,  cone( ) ,

A v B v U w
F v u v

B v U w

 −  −
= 

 −  −

                                                                          (9) 

Then, using the formula (9) , we have ( )
2 * *

* *

2

( , ) ( , )
( , ) ' ( , ), ,

u x t u x t
A u x t f u x t x t

x t

 
+ = −

 
, and taking 

into account  Theorem 3.1, we obtain that 
* *( , ), ( , ) 0,w w x t B u x t w U−   , which implies a new 

boundary condition and the Pontryagin maximum principle * *( , ), ( , ) sup , ( , )
w U

Bw x t u x t Bw u x t


= . 

Thus, we have obtained the following result. 

Theorem 3.3 The solution ( , )u x t  corresponding to the control ( , )w x t  minimizes ( )I u  in the Example 

3.1 if there exists a function 
*( , )u x t satisfying the relations (d)-(f): 

(d)   ( )
2 * *

* *

2

( , ) ( , )
( , ) ' ( , ), ,

u x t u x t
A u x t f u x t x t

x t

 
+ = −

 
, 

(e)  
* * *(1, ) ( ,1) (0, ) 0,u t u x u t= = =  

(f)  * *( , ), ( , ) sup , ( , )
w U

Bw x t u x t Bw u x t


= . 

5. Conclusion 

In this paper, we formulate the conditions of optimality for the boundary value problems posed by 

parabolic partial differential inclusions. We use convex and non-smooth analysis structures to provide 

necessary and sufficient conditions for optimality in terms of Euler-Lagrange inclusions, as well as 

transversality conditions based on approximation of some subtle calculations. Furthermore, we 

demonstrate the basic theory's results by giving an example, the so-called linear optimal control 

problem.  
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Abstract 

Considering that many types of energy resources in the world are limited, it is inevitable to focus on 

renewable energy sources to meet the needs of the world’s increasing population. Ocean energy is 

undoubtedly one of the most efficient resources among renewable energy sources in terms of its 

potential. There are many studies in the literature that have been conducted about energy conversion and 

which are guiding for further studies (Clément et al., 2002). Ocean wave energy conversion modeling 

methods are principally based on the basic wave parameters with some additional concepts. Although 

some concepts have been developed so far, with the advancing technology, scientists have sought 

superior solutions. The methods to be used to analyze ocean wave energy are as significant as obtaining 

the ocean energy itself, especially in the big data era for electricity generation and grid connection 

purposes. The compressive sensing (CS) technique, which outperforms the classical techniques since it 

uses a smaller number of samples (Candès et al., 2006a, Candès, 2006b), is one of the algorithms that 

can be used for such purposes and found come applications in coastal and ocean engineering (Bayındır, 

2016, Bayındır, 2019, Bayındır et al., 2021). In this paper, we examine the utilization of the CS for the 

efficient analysis and assessment of ocean wave energy and ocean energy conversion in general. 

Constructing a time series of the wave power following Goda (2010), Bayındır (2009) and Saulnier et 

al. (2009), the application of the CS proves to be an advantageous tool for the measurement, analysis, 

and assessment of wave energy and ocean energy conversion. We discuss our findings and comment on 

their possible usage and applications.  

 

Keywords: Ocean energy, wave energy, energy converter, compressive sensing 

 

1. Introduction 

The world population is increasing day by day and the global energy need is growing exponentially due 

to the needs of this increasing population (Clément et al., 2002). Countries that have followed a fossil 

fuel-based energy consumption policy for years because they are easy and sometimes cheap, despite 

being harmful to the environment, have started to search for new types of energy since such fuels are 

not sustainable and new energy needs occur. The issue of energy generation from waves is not a new 

issue, as it was seen in some patents towards the end of the 18th century (Clément et al., 2002). However, 

modern studies on this subject started to gain importance with the oil crisis in the 70s, with people 

turning to renewable energy sources (Drew et al., 2009). Studies on this subject leaped forward recently 

due to global climate change and increasing gases like carbon dioxide. Offering the highest energy 

density among renewable energy sources, having limited negative features compared to other sources 

during use, being compatible with the seasonal variation of wave energy and seasonal variation of 

electricity demand, and being able to travel long distances with very low energy loss are the biggest 

advantages of wave energy (Clément et al., 2002, Drew et al., 2009). Since it is the largest and most 
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efficient area where wave energy can be obtained, the oceans have naturally been the focus of studies 

on this subject. The literature on this subject is vast and the reader is referred to Clément et al. (2002) 

and the references therein for a more comprehensive discussion of the subject. 

 

2. Problem Definition 

As can be understood from all these studies, the issue of wave energy conversion in the ocean is a must. 

Effective and fast energy conversion and their measurement and analysis at least as important as the 

energy conversion itself. In this paper, we investigate the possible usage of the compressive sensing 

(CS) technique for the analysis and measurement of the time series of wave energy and power. Although 

there are some studies on CS in various branches of coastal and ocean engineering (Bayındır, 2016, 

Bayındır, 2019, Bayındır et al., 2021), to our best knowledge, there is no direct work on wave energy 

conversion measurement or analysis. We discuss the implementation of our approach, its possible 

application areas, benefits, and usage in the coming sections of this paper. 

 

3. Proposed Method 

3.1. Generation of a Random Sea State and Harvester Dynamics 

In order to simulate a realistic ocean wavefield and to simulate the ocean wave energy converter 

dynamics in such a field, we start with the Bretschneider-Mitsuyasu spectrum (Goda, 2010). This 

spectrum can be given as 

𝑆(𝑓) = 0.257𝐻𝑠
2𝑇𝑠

−4𝑓−5exp[−1.03(𝑇𝑠𝑓)−4]                                                                          (1) 

where f denotes the frequency, 𝐻𝑠 is the significant wave height, 𝑇𝑠 is the significant wave period. The 

frequency spectrum given in Eq. (1) can be converted into angular frequency spectrum by 

𝑆(𝜔) = 𝑆(𝑓)
𝑑𝑓

𝑑𝜔
                                                                                       (2) 

where the Jacobian term is given as 𝑑𝑓/𝑑𝜔 = 1/(2𝜋). In order the create a realistic wave field in the 

spatial domain, the wavenumber spectrum needs to be obtained. Using the equality of energies in the 

angular frequency spectrum and wavenumber spectrum, the wavenumber spectrum can be obtained via 

𝑆𝑘(𝑘) = 𝑆(𝜔)
𝑑𝜔

𝑑𝑘
                                                                                       (3) 

where Sk is the wavenumber spectrum (Bayındır, 2009). The parameters ω and k are related by the 

dispersion relationship 

𝜔2 = 𝑔𝑘 tanh(𝑘ℎ).                                                                                                               (4) 

Using the dispersion relationship given by Eq. (4), the expression for group velocity can be derived as 
𝑑𝜔

𝑑𝑘
= 𝐶𝑔 =

1

2
(1 +

2𝑘ℎ

sinh(2𝑘ℎ)
)

𝜔

𝑘
.                                                                                              (5) 

Therefore, using Eqs. (1)-(5), the wavenumber spectrum can be obtained (Bayındır, 2009). After the 

calculation of the wavenumber spectrum, the nodal amplitudes for each dk interval can be obtained by 

energy equality 
1

2
𝑎𝑟

2 = 𝑆𝑘(𝑘𝑟)𝑑𝑘                                                                                                                                  (6) 

where the index is r = 0,1,…,
𝑁

2
  and the parameters are 𝑘𝑟 = 𝑟𝑑𝑘, 𝑑𝑘 = 2𝜋/𝐿  where L denotes the 

periodic domain length. The parameter N is the total number of spectral components and is chosen to be 

a power of 2 in order to use FFT routines efficiently (Bayındır, 2009). Two-sided amplitude spectrum 

can be constructed from the one-sided amplitude spectrum using the symmetry relation 

𝑎𝑠 = 𝑎𝑁−𝑠                                                                                        (7) 

where the index is s = 
𝑁

2
+ 1, 

𝑁

2
+ 2,…, 𝑁 − 1. In order to ensure the randomness of the wavefield, we 

generate uniformly distributed random phases Θr with values in the interval of [0,2π] for r = 0,1,…,
𝑁

2
. 

Using these random phases and amplitudes, the complex amplitudes, A, are computed by 
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𝐴𝑗 =
𝑎𝑗 exp(𝑖𝛩𝑗)

2
                                                                                                                        (8) 

where the index is j = −
𝑁

2
+ 1, −

𝑁

2
+ 2,…, 

𝑁

2
 , the imaginary unity is 𝑖 = √−1  and the parameter 𝛩𝑗 

shows the symmetric uniformly distributed random phase shifts in the interval of [0,2π]. Then, based on 

these complex amplitudes, initial water surface elevation can be obtained by 

η𝑝 = ∑ 𝐴𝑗  𝑒𝑥𝑝(𝑖𝑘𝑗𝑥𝑝)
𝑁∕2
𝑗=−𝑁∕2+1                                                                           (9) 

where the index is p = 0,1,…, N – 1, and the discrete locations are given by 𝑥𝑝 = pdx, and the other 

parameters are as before. Using the complex amplitudes, A, the initial water surface fluctuations are 

computed by using Eq. (11) where efficient IFFT routines are employed. Similar to the water surface 

fluctuation, η, the initial velocity potential on the sea surface, 𝜙𝑠, can be constructed in a similar way 

with appropriate scaling terms (Bayındır, 2009). After the construction of the initial wave profile this 

way, the temporal evolution of the wavefield is modeled using the kinematic and dynamic boundary 

conditions given as 

η𝑡 − 𝜙𝑧
𝑠 = 0                                                                                       (10) 

and 

𝜙𝑡
𝑠 + 𝑔η = 0.                                                                                       (11) 

These equations are solved using a 4th order Runge-Kutta time-stepping algorithm. For the details of the 

wavefield simulations with linear and nonlinear effects, the reader is referred to Bayındır (2009). In 

order to model the dynamics and construct the time series of heave velocity and converted power of a 

point absorber axisymmetric buoy type power take-off (PTO) device, the transfer function analysis is 

used. The heave velocity spectrum, 𝑆�̇��̇�, is then calculated from the Bretschneider-Mitsuyasu frequency 

spectrum (renamed as 𝑆𝜂𝜂(𝑓)) by the transfer function method as 

𝑆�̇��̇�(𝑓) = 𝑆𝜂𝜂(𝑓)|𝐻�̇�𝜂|
2
(𝑓)                                                                        (12) 

where, 𝐻�̇�𝜂, is the complex, linear, frequency domain transfer function which relates the water surface 

fluctuation,η , to the heave velocity, �̇�, of the buoy type power take-off device. This transfer function is 

a device-specific function and its selection is discussed in the coming sections of this paper. The 

instantaneous power converted by a PTO device can be calculated as  

𝑃𝑃𝑇𝑂(𝑡) = 𝐶𝑃𝑇𝑂�̇�2(𝑡)                                                                         (13) 

where the parameter 𝐶𝑃𝑇𝑂 is selected to be 𝐶𝑃𝑇𝑂 = 2𝑥105 𝑘𝑔/𝑠 following Mérigaud & Ringwood  

(2017). The total power converted over a duration of time can be calculated by 

�̂�𝑃𝑇𝑂 = 𝐶𝑃𝑇𝑂 ∑ �̇�𝑛
2𝑀𝑤

𝑛=1
                                                                             (14) 

where Mw is the number of waves in that duration. 

 

3.2. Review of the Compressive Sensing 

CS has turned out to be a revolutionary algorithm in signal processing, applied mathematics, and 

engineering. We try to very briefly summarize CS in this section. A K-sparse signal 𝑃 is a signal which 

has only K nonzero element among its all N elements. Transforming 𝑃 into an orthogonal domain such 

as Fourier domains with using the orthogonal transformation matrix ψ, the signal can be represented by 

𝑃 = ψ�̂�.  Here, �̂� shows the coefficient vector. After eliminating the zeros of the signal, its sparse 

representation can be given as 𝑃𝑠 = ψ�̂�𝑠. Here, the parameter 𝑃𝑠 is identified as the signal with non-zero 

components. CS algorithm states that the K-sparse signal 𝑃 with N entries can be exactly regenerated 

using  𝑀 ≥ 𝐶𝜇2(ϕ, ψ)𝐾log(N) measurements. Here, C denotes a positive constant, ϕ symbolizes the 

sensing basis, ψ symbolizes the transformation basis, and 𝜇2(ϕ, ψ) is the mutual coherence between 

these two (Candès et al., 2006, Candès, 2006). After the sampling using the sensing matrix ϕ and M 
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random projections the constraint of the CS optimization problem becomes 𝑔 = ϕψ�̂�. Thus, the CS 

problem can be summarized as  

min‖�̂�‖
𝑙1

 under constraint 𝑔 = ϕψ�̂�                                                                                                    (15) 

where ‖�̂�‖
𝑙1

= 𝛴𝑖|�̂�𝑖|. Among all possible solutions to this problem, its l1 solution can be obtained via 

l1  optimization technique and 𝑃𝑐𝑠 = ψ�̂�. For a more comprehensive analysis of the CS, the reader is 

referred to Candès et al. (2006a) and Candès (2006b), and for some applications of CS in coastal and 

ocean engineering, the reader is referred to Bayındır (2019) and Bayındır et al. (2021). 

 

4. Results and Discussion 

In Figure 1, we depict the Bretschneider-Mitsuyasu spectrum used for the simulation of the ocean waves. 

The parameters of this spectrum given in Eq. (1) is selected to be Hs=2m and Ts=10s. The linear sea 

state corresponding to a random realization of the spectrum depicted in Figure 1 obtained by using the 

Eqs. (1)-(11) is illustrated in Figure 2 after an evolution time of t=100s. The domain of computations 

for this simulation is selected as L=1000m. 

  

  

Figure 1. Bretschneider-Mitsuyasu spectrum.   Figure 2. Simulation of the spatial variation of a linear sea. 

 
Figure 3. The transfer function 𝐻�̇�𝜂 a) Step response in time domain b) impulse response in time 

domain c) Bode diagram of frequency response in spectral domain 

 

As discussed in the preceding section, the transfer function 𝐻�̇�𝜂 is used to model the response of the 

heave velocity, �̇�, of the buoy type PTO ocean energy converter to the water surface fluctuation, 𝜂. For 

this purpose, a second-order transfer function with a damping ratio of 0.15 and resonance frequency of 
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0.25 rad/s is considered. The step response, impulse response, and the frequency response in the form 

of a Bode diagram of the transfer function 𝐻�̇�𝜂 with these parameters are depicted in Figure 3. The buoy 

heave velocity time series, �̇�(𝑡), corresponding to a realization of the water surface fluctuation at buoy 

location, 𝜂(𝑡), is depicted in Figure 4. 

 
Figure 4. A time-series of the water surface fluctuation, 𝜂, and a time series of the energy converter 

heave velocity, �̇� 

The power converted by the buoy type PTO converter is calculated from the heave velocity time series, 

�̇�(𝑡), using Eq. (13). The resulting converted power time series is depicted in Figure 5a, for a time span 

of t=0-100s.  

 
Figure 5. A time-series of the converted instantaneous wave power a) obtained by classical sampling 

with 2001 samples b) obtained by compressive sampling with 1550 samples 

 

As one can realize by checking Figure 5, the CS can be effectively used to the reconstruction of the 

original time-series using a fewer number of components. The power time-series depicted in Figure 5a 

has a sparse representation in the frequency domain and thus random sampling is performed in the time 

domain. The exact construction of the original time-series with N=2001 samples is achieved using 

M=1550 compressive samples. This undersampling ratio brings a significant advantage for the 

measurement, observation, analysis, and interpolation/extrapolation of the environment of the ocean 

wave converters and the harvesting device parameters, statistics, and health. 

 

5. Conclusion 

In this paper, we have investigated the possible usage of compressive sampling for the measurement, 

observation, analysis, and interpolation/extrapolation in the ocean wave energy conversion technology. 

For this purpose, we modeled the time-series dynamics of a buoy type power take-off converter in a 

random sea environment and modeled the converted power by such a device. Then, we showed that such 



2nd International Conference on Applied Mathematics in Engineering (ICAME’21)  

September 1-3, 2021 - Balikesir, Turkey 

 

67 

a power time series can be efficiently measured and analyzed using compressive sensing. Our findings 

will lead to many effective measurement and analysis devices for ocean energy harvesting applications. 
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Abstract 

This research focuses on the generalized synchronization (GS) of two dependent chaotic nonlinear 

advection-diffusion-reaction (ADR) processes with source terms. It is based on the bidirectionally 

coupled driver-response concept. The approach combines the backward differentiation formula-Spline 

(BDFS) scheme with the Lyapunov direct method without any transformation. The sufficient condition 

for nonlinear coupled ADR problems on the GS is given at very low diffusion effect, without detracting 

from natural features. The effectiveness of bidirectional coupling for monitoring the synchronized 

motions of two identical ADR problems is presented for various coupling strength regions. Next, a 

simulation example based on the ADR equations is presented to demonstrate the proposed approach, 

providing both synchronization and observer conception. 

 

Keywords: Nonlinear ADR equations, generalized synchronization, BDFS method, Lyapunov direct 

method 

 

1. Introduction 

The nonlinear coupled ADR system with source functions has received much attention by characterizing 

the reaction and diffusion or the interaction between advection and diffusion mechanisms. Researchers 

in this field have taken into consideration problems in various disciplines such as fluid dynamics, 

financial mathematics, turbulence, traffic flow, shock waves and gas dynamics. Next, we can address 

the coupled two identical chaotic ADR problems, one with the source function presented as the driver 

and the other as the response configuration, as follows: 

 

{
𝑢1𝑡

(𝑥, 𝑡) + ∇. (𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡)) + ∇ ∙ (−𝛾 ∇ ((𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡)))) + ℱ1(𝑥, 𝑡) = 𝓀𝑢2𝑘(𝑥, 𝑡)…𝑑𝑟𝑖𝑣𝑒𝑟 

𝑢2𝑡
(𝑥, 𝑡) + ∇ ∙ (𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡)) + ∇. (−𝛾 ∇ ((𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡)))) + ℱ2(𝑥, 𝑡) = 𝓀𝑢1𝑘(𝑥, 𝑡)… 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒.

       

                                                                                                                                                            (1)    

Here (𝑥, 𝑡) ∈ [𝑎, 𝑏]  ×  [𝑡0, 𝑇]; 𝛾 defines the diffusion coefficient; ℱ1 and ℱ2 are the forcing terms. 𝑢1𝑘 

and 𝑢2𝑘 provide control functions. 𝓀 is the coupling strength. The initial and boundary conditions are 

given by  

𝑢𝑖(𝑥, 𝑡0) = 𝑢𝑖(𝑥) , 𝑢𝑖(𝑎, 𝑡) = 𝑔𝑖(𝑡),  𝑢𝑖(𝑏, 𝑡) = 𝑔𝑖(𝑡), 𝑖 = 1,2       (2) 

where both boundary and initial functions are known.  In the last decade, researchers have studied the 

problem of chaotic phenomena for successful applications in different dynamical systems of various 

origins. In particular, their behaviour is characterized by instability over time and limited predictability. 

One of the first studies was carried out by Huygens (1973) on the coupled pendulum. A recent research 
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shows that the surprising synchronization phenomena generated between coupled chaotic processes 

(Pecora and Carroll, 1990; Pecora et al., 1997). Further research on the synchronization of coupled 

chaotic systems is still crucial because of its potential applications in various fields (Nguyen and Hong, 

2011; Khan and Singh, 2015; Tahir et al., 2018). In the case of synchronization of driver-response 

configurations, the designed controller functions create trajectories of the state variables of driver-

response systems to monitor the synchronized motions. For two identical chaotic problems, 

synchronization can be performed in two categories: unidirectional coupling synchronization and 

bidirectional coupling synchronization (Volos et al., 2015; Cuimei et al., 2019). Unidirectional coupling 

synchronization was defined as a mechanism consisting of a drive system and a response system.  The 

two systems are synchronized by presenting the state of the driver system on the response system (Tahir 

et al., 2017). However, bidirectional coupling synchronization, also called mutual coupling 

synchronization, can be obtained by introducing the state of one system to that of another, where each 

system can be considered a drive system or a response system. 

Chaos, due to many of its characteristics, can be associated with the properties of coupled nonlinear 

ADR problems with low viscosity values. Various studies have been conducted to understand the close 

relationship between ADR mechanisms and chaos (Brummitt et al., 2009, Garcia et al., 2009, Kawamura 

et al., 2017, Sari and Tahir, 2021). The close relationship between chaos and nonlinear ADR processes 

has been highlighted in the related studies, and these processes are represented by highly nonlinear 

equations as they involve the interaction between ADR mechanisms with free parameters. Therefore, a 

specialized technique is still needed to cope with such problems while preserving the physical 

characteristics of the coupled ADR processes in nature (Jima et al., 2019, Sari et al., 2019, Singh et al., 

2019 and Tahir et al., 2021). Due to the state of the coupling signal, the GS can be classified as 

bidirectional and unidirectional (Yongguang and Suochun, 2004; Yu and Zhang, 2004; Kanako and 

Toshiki, 2019). In this work, we present new synchronization numerical schemes by combining the 

BDFS scheme with the Lyapunov direct method based on the bidirectional coupled driver-response 

concept. This approach, passing through the BDFS scheme, which is effective in studying the coupled 

ADR equations, replaces the coupled nonlinear ADR equation by an ODE system that does not require 

linearization. The BDFS scheme is unconditionally stable and produces highly accurate solutions in 

space and time. The GS has been studied to design the controller function of coupled nonlinear ADR 

problems without any linearization by selecting the appropriate coupling parameters. Interestingly, this 

work focuses on more attractive bidirectional coupling synchronization so as not to linearize natural 

processes and thus cause loss of real features. 

The paper is organized as follows. Section 2 examines the BDFS and Lyapunov direct methods for 

solving the dynamics and synchronization of bidirectional coupling of behaviours of nonlinear coupled 

ADR processes. Then, we provide numerical examples to demonstrate the effectiveness of the proposed 

method in Section 3. Concluding remarks and recommendations are presented in Section 4. 

 

2. Proposed Method 

 In this section, the required solutions of the driver-response ADR chaotic problem (1)-(2) are 

approximated by the cubic interpolating splines: 

 

𝑆𝑖(𝑥, 𝑡) = ∑ 𝛼𝑖,𝑗
𝑚+1
𝑗=−1 𝐵𝑗(𝑥), 𝑖 = 1,2                                                              (3) 

 

where 𝛼𝑖,𝑗 is time-dependent parameter. We denote the well-known B-spline functions with 𝐵𝑗(𝑥).  By 

taking into account of the interpolating conditions at points, we have  

 

𝑆𝑖(𝑥𝑗 , 𝑡) = 𝑢𝑖(𝑥𝑗 , 𝑡),  𝑖 = 1,2, 𝑗 = 0, . . . , 𝑚 
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𝑆𝑖
′′(𝑎, 𝑡) = 𝑆𝑖

′′(𝑏, 𝑡). 

 

By substituting the interpolating conditions at boundary points 𝑥0 = 𝑎, 𝑥𝑚 = 𝑏 and satisfying the 

natural cubic splines, one finds  

 

𝛼𝑖,−1(𝑡) = 2𝛼𝑖,0(𝑡) − 𝛼𝑖,1(𝑡), 

𝛼𝑖,𝑚+1(𝑡) = 2𝛼𝑖,𝑚(𝑡) − 𝛼𝑖,𝑚−1(𝑡), 

𝛼𝑖,0(𝑡) = 𝑢𝑖(𝑥0,𝑡) = 𝑔𝑖(𝑡),  𝑖 = 1,2, 

𝛼𝑖,𝑚+1(𝑡) = 𝑢𝑖(𝑥𝑚, 𝑡) = 𝑔𝑖(𝑡),   𝑖 = 1,2. 

 

The approximated cubic spline 𝑆𝑖 must also satisfy the initial conditions at points 𝑥0, . . . , 𝑥𝑚 and then 

at 𝑡0 

𝑆𝑖(𝑥0, 𝑡0) = 𝑢𝑖,0(𝑥0), 

𝑆𝑖(𝑥0, 𝑡0) = 𝑢𝑖,0(𝑥0), 𝑖 = 1,2,  𝑗 = 0, . . . , 𝑚, 

𝑆𝑖(𝑥𝑚, 𝑡0) = 𝑢𝑖,0(𝑥𝑚). 

 

Then, by using the above relations, we have  

𝐴1𝑢𝑖(𝑡0) = 𝑢𝑖,0 

 

where 𝐴1 = [
𝐴  
0

0
  𝐴

] with the size 2(𝑚 − 1) × 2(𝑚 − 1) and matrix  𝐴 is an (𝑚 − 1) × (𝑚 − 1) 

tridiagonal matrix and 𝑢𝑖,0 = [𝑢𝑖,0(𝑥1) −
1

6
𝑢𝑖,0(𝑥0), 𝑢𝑖,0(𝑥2), . . . , 𝑢𝑖,0(𝑥𝑚−1) −

1

6
𝑢𝑖,0(𝑥𝑚)]. 

Now, by virtue of above relations, we reach the following ODEs: 

 

𝐴1

𝑑𝑣

𝑑𝑡
= 𝐷1𝑣(𝑡) + ℑ(𝑣(𝑡))

𝐴1𝑣(𝑡0) = 𝑣0.
       (4) 

 

Here, matrix 𝐷1 is a tridiagonal matrix with the size of 2(𝑚 − 1) × 2(𝑚 − 1).  We have used the BDF 

to solve the tridiagonal system encountered in (4) and employed the Newton method for the 

approximation of 𝑣𝑛 at p −order with the time step 𝛥𝑡 = (𝑇 − 𝑡0) 𝑁⁄  with the knots 𝑡𝑛 = 𝑡0 + 𝑛𝛥𝑡 for 

𝑛 = 0, . . . , 𝑁 given by 

𝐴1𝑣𝑛 − 𝜎ℎ[𝐷1𝑣𝑛 + 𝑘𝑖ℑ(𝑣𝑛)] − ∑ 𝜇𝑗
𝑝
𝑗=0 𝑣𝑛−𝑗 = 0. 

The coefficients 𝜎, 𝜇 are known. In order to observe the GS behaviours of the nonlinear coupled ADR 

problems with the property that every approximate solution converges to an exact solution at the low 

value of the viscosity coefficient based on the Lyapunov direct method.  Again system (4) is given by 
𝑑𝑣

𝑑𝑡
= 𝐴1

−1[𝐷1𝑣(𝑡) + ℑ(𝑣(𝑡))]. 

 

Due to the fact that 𝐴1
−1, 𝐷1 is considered to be a tridiagonal matrix defining regular systems and negative 

definite when the eigenvalues are all different and real parts of them are negative.  We can study the 

coupling parameters for synchronizing two chaotic ADR problems with respect to the coupling strength 

at the optimal value.  Furthermore, the stability leads to that 𝑡 > 𝑇 − 𝑡0 and 𝓀 > 0.  Then, the GS 

behaviour of the nonlinear coupled ADR problem consisting of controller function 𝑢𝑘,𝑖, 𝑖 = 1,2, gives 

the following property 
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𝑙𝑖𝑚
𝑡 → ∞

‖𝑒(𝑡) ‖ =  𝑙𝑖𝑚
𝑡 → ∞

‖𝕍(. , 𝑡2𝑛) −   𝕊(. , 𝑡2𝑛) ‖ = 0, 

 

where,  𝕍(. , 𝑡2𝑛) =  [
𝑢1(. , 𝑡𝑛)
𝑢2(. , 𝑡𝑛)

] and 𝕊(𝑥2𝑛 , . ) =  [
𝑆1(. , 𝑡𝑛)
𝑆2(. , 𝑡𝑛)

].  In the next section, we explore the GS 

behaviour between two identical nonlinear coupled ADR processes without losing the inherent features 

of nature and with reducing computational difficulties in finding numerical solutions at a low value of 

the viscosity coefficient through the BDFS method. 

 

3. Result and Discussion 

In this section, we apply the techniques outlined above to the synchronization problem of identically 

coupled chaotic ADR problems to demonstrate the effectiveness of the proposed generalized 

synchronization. The globally generalized synchronization with respect to control functions is also 

confirmed by the simulation result at various coupling strengths. The computational domain [a, b] is 

discretized to equally spaced elements. All computations have been carried out using MATLAB 2020 

on a workstation with 16 significant decimal digits. The error norm is given to explain the 

synchronization of the driver and the response equations: 

 

𝓀 →  ‖𝐸(𝑢𝑖)‖∞ = ‖𝕍 −  𝑆𝑖‖∞. 

 

To illustrate the efficiency of the proposed numerical scheme, we consider the coupled nonlinear 

Burgers equation with source functions in the following form 

 

 {
𝑢1𝑡

− 0.00001 𝑢1𝑥𝑥
+ 𝑢1 𝑢1𝑥

= ℱ1(𝑥, 𝑡) +  𝓀𝑢2𝑘(𝑥, 𝑡) …𝑑𝑟𝑖𝑣𝑒𝑟 

𝑢2𝑡
− 0.00001 𝑢2𝑥𝑥

+ 𝑢2 𝑢2𝑥
= ℱ2(𝑥, 𝑡) +  𝓀𝑢1𝑘(𝑥, 𝑡) … 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒.

                              (5) 

 

The initial, boundary and source functions are taken from the exact solutions. The exact solutions of the 

proposed problem are: 

𝑢1𝑡
(𝑥, 𝑡) = 𝑒−𝑡  ( 𝑥 − 

𝑥2

2
 ), 

𝑢2𝑡
(𝑥, 𝑡) = 𝑒−𝑡  𝑥 ( 1 −  𝑥 ). 

 

The control functions u1k and u2k can be determined by the Lyapunov direct method. Full 

synchronization of the proposed coupled model has been observed for 𝓀 ≥ 0.05. As shown in the 

simulation, the GS behaviour in the proposed problem (5) is observed as the viscosity decreases. The 

synchronization is observed in Figure 1 when 𝓀 becomes larger with relatively small viscosity values. 

It is clear that the synchronization errors of bidirectional coupling converge to zero in a much shorter 

time than that of the unidirectional coupling. 
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A) 𝓀 = 0.001 

 
 

B) 𝓀 = 0.05 

 

Figure 1. Synchronizational behaviour of the proposed problem at various coupling strengths 𝓀 =

0.001, 0.05. 

 

4.  Conclusions and Recommendation 

In this research, the GS of spatial chaotic identical nonlinear ADR processes with the forcing term, 

which bidirectionally coupled, have been analysed. Based on the BDFS and Lyapunov direct method, 

generalized synchronization of two identical Burgers equations has been realized. From the numerical 

results produced, it has been notably concluded that the bidirectional coupling can be synchronized in a 

much shorter time than the unidirectional coupling at a very low viscosity value. For further research, 

synchronization theory remains a challenging problem of nonlinear behaviour in a network of the ADR 

processes in more realistic environments. 
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Abstract 

In this paper, we consider evaluating and comparing candidate systems for acquisition using statistical 

design and analysis of experiments techniques. Due to numerous decision variables inherent in 

acquisition decisions and the high technology of the candidate systems, enterprises need decision 

support for making these decisions. In this regard, utilizing quantitative methods is of utmost 

importance. To address this issue, statistical design and analysis of experiments field provides 

quantitative techniques for designing appropriate experiments and analyzing the experimental data. 

These techniques are particularly useful for enterprises that procure systems as Commercial-Off-The-

Shelf (COTS). Even though procuring a COTS product has advantages for ensuring a shorter acquisition 

lead time, it inherently involves risks since design specifications declared by the provider may not reflect 

the real performance of the system under various operating conditions. Consequently, these risks oblige 

enterprises to conduct a rigorous evaluation. In order to show how these quantitative techniques can be 

applied to real-life problems, we present an application dealing with the acquisition of a naval gun 

system as COTS. The case study shows that the analysis provides adequate decision support for 

evaluating and comparing candidate system alternatives. 

 

Keywords: Design of experiments, nested design, system performance evaluation, case study. 

 

1. Introduction 

Acquisition decisions are inherently complex for enterprises when the system of interest is a complex 

one involving high technology. Moreover, the high costs of such systems make Decision Makers (DMs) 

aspire for better value for money. These compelling factors and numerous decision variables make it 

impossible for the DM to reach a solution with a holistic judgement. To address these decision problems, 

the field of Operations Research (OR) offers various techniques for providing decision support to the 

DM. The OR field utilizes mathematical modeling, statistical analysis, and optimization techniques for 

partitioning the problem into manageable pieces and solving each of these with analytical techniques.  

Analytical techniques heavily rely on quantitative data. In this regard, measuring the performance of 

candidate systems in quantitative terms has become an important step in system acquisition processes. 

In order to obtain these data, a thorough test and evaluation planning is required. A combined test and 

evaluation process can be defined as a process where a system is tested and related data are analyzed for 

comparing them against requirements or alternative system solutions (Eriskin and Gunal, 2019). Test 

and evaluation of systems can be partitioned into two main categories, namely, (i) Developmental Test 

and Evaluation (DTE) and (ii) Operational Test and Evaluation (OTE) (Eriskin and Gunal, 2019). DTE 

aims at promoting engineering processes where the developed system is tested and evaluated against 

predefined technical and performance specifications. OTE, on the other hand, focuses on testing and 
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evaluating the system under real-life conditions where various factors including uncontrollable ones are 

considered. For evaluating and comparing the performance of system alternatives that are under 

consideration for the acquisition, OTE is conducted.  

Designing an experiment statistically is very important because with such experimentation appropriate 

data can be collected and analyzed with relevant statistical methods. Hence, objective and meaningful 

conclusions can be drawn from the analysis. In general, there are two main pillars of experimentation: 

experimental design and statistical analysis (Montgomery, 2017). These pillars are closely related and 

should be planned together since experimental analysis dictates what kind of statistical analyses can be 

conducted. Being a branch of applied statistics, Design and Analysis of Experiments (DOE) provides 

techniques for designing the appropriate experiments and analyzing the experimental data. DOE allows 

for multiple factors, both controllable and uncontrollable, to be included in the design simultaneously 

and identifies important interactions among them. DOE mainly aims at quantifying and explaining the 

variation in the response (dependent) variable (i.e., performance measure in the system evaluation 

context) caused by different levels of experimental factors (independent variables).  

There exist studies in the literature dealing with evaluation and selection of various systems, such as 

attack helicopter (Cheng et al., 1999), the surface to air missile (Lee et al., 2010; Wang et al., 2014), 

tactical missile system (Chen, 1996; Cheng, 1999; Chen and Shyu, 2006), and space system (Burk et 

al., 1997; Rayno et al., 1997; Parnell et al., 1998), however, only Wang et al. (2014) applies DOE for 

performance measurement of alternative systems. In this context, we consider the problem of selecting 

the best Naval Gun System (NGS) among several candidates by conducting an OTE. Being one of the 

decision-making problematics, selection or choice problem is frequently encountered in real-life 

applications and usually involves multiple criteria to be evaluated (Eriskin, 2021). Consequently, this 

study aims to provide decision support to the DMs for acquisition decisions. We utilize DOE techniques 

for the experimental design and statistical analysis.  

The paper is organized as follows: In Section 2 we define the problem. Section 3 provides the details of 

the design of experiment and statistical analysis. Finally, we conclude in Section 4. 

 

2. Problem Definition 

We consider an illustrative NGS acquisition process as Commercial-Off-The-Shelf (COTS). COTS 

systems are already developed and produced systems that are available for acquisition. Even though 

procuring a COTS has advantages for ensuring a shorter acquisition lead time, it inherently involves 

risks. For instance, COTS are developed for the common user, and may not be compatible and 

interoperable with buyer’s systems that are already in the inventory (Eriskin and Gunal, 2019). 

Moreover, design specifications declared by the provider may not reflect the real performance of the 

system under various operating conditions. Consequently, these risks oblige the buyers to conduct a 

rigorous evaluation.  

A Navy announces that it will procure 10 modern NGSs as COTS for its newly produced frigates. An 

NGS comprises a naval gun and two (main and secondary) Fire Control Radars (FCRs). Three 

companies (i.e., Alfa, Bravo, Charlie) are competing in order to get the deal. The Navy stipulates that 

these companies participate in the OTE that will be conducted by the Navy itself. In this OTE, the Navy 

wants to evaluate the performance of the candidate systems in terms of precision of hitting surface 

targets. The performance measure in this OTE is the deviation of shells from the target in yards. The 

Navy assigns two ships for the OTE. The idea is to install portable versions of the candidate NGSs on 

board these ships and perform a live firing experiment with its crews. Hence, it will be possible to 

experiment these three systems with two different crews at sea under realistic conditions. A group of 

experts is gathered for conducting and analyzing the OTE. 
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3. DOE Procedure 

In this section, we first explain the design of the experiment and then provide the details of the pertaining 

statistical analysis. 

 

3.1. Design of Experiment 

In order to design proper experimentation, system dynamics should be clearly understood. The naval 

guns are directed to surface targets with FCRs. There are two FCRs within each NGS. The FCR used in 

firing affects the performance of a NGS and both FCRs are used interchangeably in surface warfare. 

Field experts estimate that the mean range of the first contact from a surface target is 15,000 yards, 

hence, the firing range in the OTE should be this distance. Even though both ships participating in the 

OTE have well-trained personnel, it is doubted that their performance in naval gun firing may differ, 

hence, should be taken into account. The last factor that is believed to have an impact on the performance 

of a NGS is the sea state. Sea state causes pitch and roll, which affects the stability of the ship and the 

NGS. The sea state is measurable but uncontrollable.  

Consequently, the OTE team determines a total of 4 factors that should be considered in the experiment. 

These design factors and pertaining levels are given in Table 1. 

 

Table 1. Design factors and their levels 
Factor Levels 

Naval Gun System Alfa, Bravo, Charlie 

Ship S1, S2 

Fire Control Radar R1, R2 

Sea State 
Measurable but 

uncontrollable 

 

In certain multifactor experiments, the levels of one factor (e.g., factor B) may seem quite similar for 

different levels of another factor (e.g., factor A). However, this similarity may mislead us in designing 

an experiment in the sense that they are identical but in fact, they are not. In such cases, we say the levels 

of factor B are nested under the levels of factor A. Since FCRs are specific to each NGS, levels of FCR 

factor are nested under the levels of NGS factor. Therefore, we need a design with both nested and 

factorial factors. For detailed information regarding nested designs and their statistical analysis, the 

interested reader is referred to (Montgomery, 2017). In this experiment, the FCR factor is the nested one 

(nested under the NGS factor) while the factors NGS and Ship are the factorial factors. In order to 

calculate the error term, each factor combination is replicated twice, hence the OTE team decides to 

perform a total of 24 runs for the experiment. Aiming to hedge against nuisance factors, all 24 runs are 

randomized. The resulting nested design is illustrated in Figure 1. 

 

 
 

Figure 1. Nested design for the NGS OTE 
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3.2. Statistical Analysis 

The nested design for the NGS OTE and the deviations measured for each firing are given in Table 2. 

 

Table 2. Nested design and results of the experiment (deviations in yards) 
Std 

Order 

Run 

Order 
PtType Blocks NGS FCR Ship Dev 

Std 

Order 

Run 

Order 
PtType Blocks NGS FCR Ship Dev 

3 1 1 1 1 2 1 80 18 13 1 1 2 1 2 96 

16 2 1 1 1 2 2 62 9 14 1 1 3 1 1 135 

14 3 1 1 1 1 2 74 23 15 1 1 3 2 1 136 

12 4 1 1 3 2 2 107 19 16 1 1 2 2 1 103 

6 5 1 1 2 1 2 89 21 17 1 1 3 1 1 118 

20 6 1 1 2 2 2 95 4 18 1 1 1 2 2 87 

1 7 1 1 1 1 1 77 7 19 1 1 2 2 1 92 

13 8 1 1 1 1 1 87 8 20 1 1 2 2 2 93 

17 9 1 1 2 1 1 104 10 21 1 1 3 1 2 113 

24 10 1 1 3 2 2 128 22 22 1 1 3 1 2 113 

11 11 1 1 3 2 1 119 2 23 1 1 1 1 2 83 

15 12 1 1 1 2 1 80 5 24 1 1 2 1 1 114 

 

To that end, a linear model with both nested and factorial factors is constructed for the design. The fixed 

effect linear model is shown in Equation (1). 

𝑦𝑖𝑗𝑘𝑙 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + 𝛾𝑘(𝑖) + (𝜏𝛽)𝑖𝑗 + (𝛽𝛾)𝑗𝑘(𝑖) + 𝜖𝑖𝑗𝑘𝑙        {

𝑖 = 1,2,3
𝑗 = 1,2
𝑘 = 1,2
𝑙 = 1,2

 (1) 

 

In this equation 𝜏𝑖 represents the NGS effect, 𝛽𝑗 represents the Ship effect, 𝛾𝑘(𝑖) represents the FCR 

effect, (𝜏𝛽)𝑖𝑗 is the effect of NGS*Ship interaction, and (𝛽𝛾)𝑗𝑘(𝑖) is the effect of Ship*FCR interaction. 

Note that since levels of FCR factor are nested under the levels of NGS, not every level of FCR factor 

appears with every level of NGS factor. Thus, there are no NGS*FCR interactions and 3-way 

interactions of factors.  

The statistical analyses are conducted with Minitab 19 Statistical Software. Firstly, we examine the 

residual plots for adequacy checking of the Analysis of Variance (ANOVA) model. We generated the  

“four in one plot” with Minitab 19 and observed that residual plots are satisfactory in terms of (i) 

Normality, (ii) Homoscedasticity, and (iii) Auto-correlation.  

ANOVA results of the model are given in Table 3. The R2 figure of the ANOVA is 88.22%, hence, 

88.22% of the variation in the response variable (deviations) is explained by the model. ANOVA reveals 

that the NGS effect is significant. Therefore, we reject the null hypothesis suggesting that the mean 

deviations of all NGSs are equal. Consequently, we conclude that there is a statistical difference between 

NGSs’ hitting performances. Also, we can reject the null hypothesis claiming that there is no difference 

between Ships’ performances at 𝛼 = 0.05 since the p-value is 0.043 for the Ship effect. None of the 

interaction terms is statistically significant in the analysis. 

 

Table 3. ANOVA results 
 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

  NGS 2 7149,07 3574,53 41,04 0,000 

  Ship 1 444,93 444,93 5,11 0,043 

  FCR(NGS) 3 79,22 26,41 0,30 0,823 

  NGS*Ship 2 56,27 28,13 0,32 0,730 

  FCR(NGS)*Ship 3 96,14 32,05 0,37 0,777 

Error 12 1045,15 87,10     

Total 23 8870,78       
 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

9,33252 88,22% 77,42% 52,87% 

 

 



2nd International Conference on Applied Mathematics in Engineering (ICAME’21)  

September 1-3, 2021 - Balikesir, Turkey 

 

78 

Since the NGS effect is statistically significant, we examine the Tukey pairwise comparisons of NGS 

performances with a 95% confidence level. Looking at the pairwise comparisons presented in Table 4 

and Figure 2, we observe that  NGS-1 (Alfa) has the best (minimum) deviation performance among all 

NGSs. Consequently, we can conclude that the Alfa NGS has the best performance figures in terms of 

“Precision”. %95 confidence intervals for the pairwise differences in means also indicate that the 

differences are statistically significant.  
 

Table 4. Grouping information using the Tukey method and 95% confidence 
 

NGS N Mean Grouping 

3 8 121,017 A   

2 8 98,130  B  

1 8 78,791   C 

      
 

 
Figure 2. Tukey pairwise comparisons 

 

Figure 3 shows the main effects plot for NGS and Ship factors. This figure verifies the superiority of 

NGS-1 (Alfa) in terms of precision. We also observe that Ship-2 performs better in the live firing 

experiments. In Figure 4, the interaction plot between these two main factors is presented. As seen from 

the figure, there is no interaction between these two factors, which verifies the ANOVA results given in 

Table 3. 

 

  
Figure 3. Main effects plot for NGS and Ship 

factors 

Figure 4. Interaction plot for NGS*Ship 

interaction 

 

4. Conclusion 

We considered evaluating and comparing candidate systems for acquisition using DOE techniques. Due 

to the complexity of the acquisition decisions and costs of the candidate systems, enterprises require 

decision support for making these decisions. Hence, utilizing quantitative methods is of utmost 
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importance. Being a branch of the applied statistics, the DOE provides quantitative techniques for 

designing the appropriate experiments and analyzing the experimental data.  

One issue to keep in mind that the DOE process should be considered holistically. Therefore, all 

stakeholders and participants should be involved in the process from the beginning. For instance, 

analysts that will plan the experiment and conduct the statistical analysis should be part of the process 

from the beginning and evaluate what can be measured quantitatively and what cannot. Moreover, for a 

proper design and statistical analysis, system dynamics should be clearly understood by the analyst.  

In this paper, we presented an illustrative case study where a nested design including both nested and 

factorial factors is performed. As future work, various applications utilizing other experimental designs 

and combining the resulting analyses with multi-criteria decision aid techniques can be presented. 
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Abstract 

Turkey is a developing country and has a high import energy dependency rate to meet its energy demand, 

which makes it more critical to forecast the energy demand accurately. Fitting a regression model is a 

well-accepted method to estimate energy demand of a country. The prediction quality of a regression 

model is directly related to the parameters of predictor variables. Metaheuristic algorithms and artificial 

neural networks (ANN) are widely employed in the literature to determine the values of these 

parameters. However, instead of employing these algorithms, optimization can be used to determine 

regression parameters in a more intelligent manner. For that purpose, in this study we use goal 

programming (GP), which is a well-known multi-objective mathematical programming technique, and 

well-known least squares estimation (LSE). The performance of GP and LSE are compared to the 

performance of some metaheuristic and ANN methods proposed in the literature for the energy demand 

prediction of Turkey. It is observed that GP and LSE outperform all the metaheuristics and the ANN in 

different performance measures with a much less effort in developing and running. 

Keywords: Energy demand forecasting, goal programming, multiple linear regression 

 

1. Introduction 

Energy is important for all countries, but it is especially important for developing countries. The energy 

demand of those countries increases dramatically due to the rapid rise in per capita income and 

population. Turkey has one of the fastest growing energy demands among the Organization for 

Economic Co-operation and Development (OECD) countries in the past two decades. Regarding to that, 

Turkey's reliance on imported energy increases. Energy imports are expensive, and energy storage is 

neither simple nor cost-effective, therefore maintaining the energy supply-demand balance is 

indispensable. This balance is provided by efficient energy planning. The basic step in efficient planning 

is the accurate estimation of energy demand.  

Energy demand of a country is related to various factors such as, gross national product, population, 

industrial production index, import, export, weather temperatures, electricity prices, oil prices, number 

of vehicles, inflation percentages etc. Considering mentioned factors above, many different 

methodologies were applied to forecast the energy demand of Turkey. Some of the important studies 

are listed in Table 1, briefly. 

Most of the above studies try to find a good regression model to predict the energy demand of Turkey. 

Regression analysis is a methodology that allows finding a functional relationship (i.e., model/equation) 

among response (or dependent) variables and predictor (or independent) variables. If the functional 

relationship is linear and there exists only one predictor variable, then it is called simple linear 

regression. If there are more than one independent variable that affect the value of a dependent variable, 

then the regression model is a multiple linear regression model. Since the amount of energy demand 
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depends on numerous predictor variables, fitting a multiple linear regression model is quite appropriate 

for energy demand prediction. Multiple linear regression is explained in the next section. 

 

Table 1. Some studies aiming to forecast Turkey’s energy/electricity demand. 

Method Used Type of method Author(s) Forecasted variable 

Statistical approaches ARIMA Erdogdu (2007) Electricity demand 

  Ridge Regression and 

Partial LSE Bulut and Yıldız (2016) Energy demand 

  Linear Regression Aydın (2014)  Energy demand 

Artificial Neural    Günay (2016) Electricity demand 

Network   Kankal et al. (2011) Energy demand 

Metaheuristics Genetic Algorithm Ceylan and Öztürk (2004) Energy demand 

  Particle Swarm Opt. (PSO) Ünler (2008)  Energy demand 

  PSO and ACO Kıran et al. (2012a) Electricity demand 

  Ant Colony Opt. (ACO) Toksarı (2007) Electricity demand 

 Differential Evolution Beskirli et al. (2017) Energy demand 

Hybrid methods Hybridized PSO and ACO  Kıran et al. (2012b) Energy demand 

Grey Theory Grey Prediction Akay and Atak (2007) Electricity demand 

 

Fitting a regression model means determining the coefficients (parameters) of the model. The literature 

essentially stands on proposing new metaheuristics and artificial neural networks to determine the values 

of those coefficients, effectively (Kıran et al., 2012a). However, both developing and running processes 

of these types of algorithms may be grueling.  

In this study, we fit multiple linear regression models by using least square estimation (LSE) and goal 

programming (GP). Applying LSE and GP methods need little effort. Therefore, if it can be shown that 

the estimation quality of LSE and GP is comparable to that of metaheuristics or ANNs, then the prior 

methods may be preferred. The study mainly aims to evaluate the performance of LSE and GP in 

comparison to the performances of some metaheuristics and artificial neural networks existed in the 

literature. Moreover, due to our knowledge, goal programming has never been applied for the energy 

demand estimation of Turkey. Therefore, this study also contributes to the literature in this perspective.  

 

2. Multiple Linear Regression  

In this study, Turkey’s energy demand is modeled by multiple linear regression.  In multiple linear 

regression, the response variable 𝑌 is related to 𝑘 independent (predictor) variables (𝑋𝑖 , 𝑖 = 1,⋯𝑘) as 

shown in equation (1). The 𝛽𝑖 , 𝑖 = 0,1,⋯ 𝑘 parameters are called regression coefficients.  

 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯𝛽𝑘𝑋𝑘 + 𝜀                                                                                                (1) 

 

Consider the following model, which is a second order response surface model: 

 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽11𝑋1
2+𝛽22𝑋2

2 + 𝛽12𝑋1𝑋2 + 𝜀                                                                    (2) 

 

Here, we can let  𝑋3 = 𝑋1
2, 𝑋4 = 𝑋2

2, 𝑋5 = 𝑋1𝑋2, 𝛽3 = 𝛽11, 𝛽4 = 𝛽22 𝑎𝑛𝑑 𝛽5 = 𝛽12. Then this model 

is also a multiple linear model as shown in equation (3). Computational results for this type of a model 

are also reported in the computational results section. 

 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5 + 𝜀                                                                              (3) 

 

To estimate the Y values a fitted model is developed as follows:  
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�̂� = �̂�0 + �̂�1𝑋1 + �̂�2𝑋2 + ⋯ �̂�𝑘𝑋𝑘                                                                                                         (4) 

 

where �̂� is the predicted value and �̂�𝑖 are the estimates of the regression coefficients. The estimation 

errors for each data point are called as residuals and calculated by 𝑒𝑖 = 𝑦𝑖 − �̂�𝑖. Different functions of 

these residuals lead to different performance metrics which are used to evaluate the quality of the fitted 

model. Sum of square errors (SSE), mean absolute error (MAE) and root of mean square error (RMSE) 

are the performance metrics applied in this study. Their formulations are given below. 

SSE=∑ (𝑦𝑖 − �̂�𝑖)
2𝑁

𝑖=1                                                                                                                               (5) 

MAE= 
1

∑ |𝑦𝑖 − �̂�𝑖|
𝑁
𝑖=1 ,                                                                                                                          

(6) 

RMSE=√
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)

2𝑁
𝑖=1               (7) 

3. Least Squares Estimation 

Least squares estimation (LSE) is a kind of optimization method, which was first introduced by 

Legendre (1805). The LSE method chooses the model parameters (the βs) so that the sum of squares of 

the errors (SSE) is minimized.  

𝐿 = 𝑒1
2 + 𝑒2

2 + ⋯𝑒𝑛
2 = ∑ 𝑒𝑖

2 = ∑ (𝑦𝑖 − 𝛽0 − 𝛽1𝑋1𝑖 − 𝛽2𝑋2𝑖 − ⋯−𝛽𝑘𝑋𝑘𝑖)
2𝑛

𝑖=1
𝑛
𝑖=1                            (8) 

𝐿 = ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑋𝑗𝑖
𝑘
𝑗=1 )

2𝑛
𝑖=1                                                                                               (9) 

The least squares function L defines the sum of squares of the errors (SSE) in equations (8-9). The L 

function is differentiated with respect to all 𝛽 coefficients and the partial derivatives are all equated to 

zero. The resulting system of equations is solved, thus the �̂� values are obtained. 

4. Goal Programming 

Goal Programming (GP) is a multi-objective programming technique, which was first introduced by 

Charnes et al. (1955). The essence of GP is to try to achieve a set of goals (targets) as closely as possible. 

Unwanted deviations from the goals are minimized in the objective function. The mathematical model 

of a general GP is given below in equations (9-11). Here, the model has two sets of constraints: goal 

constraints and system (hard) constraints. 𝑄 is the set of hard constraints. The 𝑓𝑖(𝒙) is a linear function 

of 𝒙, and 𝑏𝑖 is the target value for that objective, 𝑑𝑖
− and 𝑑𝑖

+ determine the negative and positive 

deviations from 𝑏𝑖. The 𝑤1 and 𝑤2 are the respective weights related to the negative and positive 

deviations.  

min𝑍 = ∑ 𝑤1𝑑𝑖
− + 𝑤2𝑑𝑖

+𝑛
𝑖=1                                                                                                                  (9) 

𝑠. 𝑡.      

𝑓𝑖(𝒙) + 𝑑𝑖
− − 𝑑𝑖

+ = 𝑏𝑖 ,                  𝑖 = 1,⋯ , 𝑛                                                                                       (10) 

𝒙 ∈ 𝑄                                                                                                                                                    (11) 

We know that  �̂� = �̂�0 + �̂�1𝑋1 + �̂�2𝑋2 + ⋯ �̂�𝑘𝑋𝑘 is the fitted multiple linear regression equation. Since 

the residual is 𝑒𝑖 = 𝑦𝑖 − �̂�𝑖, we can write the equation (12). 

 

𝑌𝑖 = �̂�0 + �̂�1𝑋1𝑖 + �̂�2𝑋2𝑖 + ⋯+ �̂�𝑘𝑋𝑘𝑖 + 𝑒𝑖 ,     ∀𝑖                                                                                 (12) 
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When we consider 𝑒𝑖 = 𝑑𝑖
− − 𝑑𝑖

+, the GP can be applied to obtain good estimations of β coefficients as 

following: 

 

𝐆𝐏𝟏: 

min𝑍 =
1

|𝑁|
∑ (𝑑𝑖

− + 𝑑𝑖
+)𝑛

𝑖=1                                                                                                                  (13) 

𝑠. 𝑡. 

�̂�0 + �̂�1𝑋1𝑖 + �̂�2𝑋2𝑖 + ⋯+ �̂�𝑘𝑋𝑘𝑖 + 𝑑𝑖
− − 𝑑𝑖

+ = 𝑌𝑖 ,                  𝑖 = 1,⋯ , 𝑛                                         (14) 

�̂�0, �̂�1, ⋯ �̂�𝑘 , 𝑑𝑖
−, 𝑑𝑖

+ ≥ 0                                                                                                                       (15) 

Here in this model (GP1), the objective function finds the mean absolute error (MAE) metric for the 

regression. To get sum of squares error (SSE) metric, only the objective function of the above model 

needs to be changed, while all the constraints remain the same. The objective function of this new model 

(GP2) would be as in equation (16) below. 

 

𝐆𝐏𝟐: min 𝑍 = ∑ (𝑑𝑖
− + 𝑑𝑖

+)2 𝑛
𝑖=1                                                                                                          (16) 

 

5. Computational Results 

In this section, we compared the performance of LSE and Goal Programming (GP1 and GP2) with some 

metaheuristics and ANN algorithms found in the literature. For this purpose, we have made several 

analyses. The LSE is executed on MS Excel. The GP1 and GP2 models are implemented in the General 

Algebraic Modelling System (GAMS) and use the CPLEX and CONOPT solvers, respectively. The 

running times for all the analyses are just around one CPU second. 

In the first analysis, we considered a model that includes four indicators (GDP, population, import and 

export) to estimate Turkey’s energy demand by using a benchmark data given for 1979-2005 years. That 

data set was used by different researchers (for different methods) to evaluate the performance of their 

multiple linear regression (Table 2) and second-order response surface models (Table 3). Please bear in 

mind that GP1 results a model for the MAE metric and GP2 results a model for the MSE (or RMSE) 

metric, therefore SSE and MAE values are not available (n/a) for GP1 and GP2, respectively. 

Both of the Tables 2 and 3 show that the LSE and the GPs (GP1 and GP2) result better regression models 

than the well-known metaheuristics since the related values are smaller. Best values obtained are shown 

in italics. The last column, namely Imp (%), indicates how much improvement is obtained as a 

percentage by the proposed methods regarding to the best value given in the literature. For example, in 

Table 2 the best MAE value given by the previous methods is 1.10 (found by DE and HAPE algorithms). 

We have obtained 1.02 by GP1. Therefore, our study improved this value by 7.2 %. 

 

Table 2.  Results for the first data set (multiple linear regression model) analysis 

Performance 

Metric 

ACO 

(Toksari, 

2007) 

PSO  

(Ünler, 

2008) 

HAPE                         

(Kiran etal, 

2012) 

DE               

(Beskirli  

etal, 2017) 

LSE GP1 GP2 Imp (%) 

SSE 45.724 42.614 41.7121 41.712 41.712 n/a 41.712 0 

MAE 1.133 1.110 1.10 1.10 1.10 1.02 n/a 7.2 
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Table 3. Results for the first data set (second-order response surface model) analysis 

Performance 

Metric 

ACO 

(Toksari, 

2007) 

PSO  

(Ünler, 

2008) 

HAPE                         

(Kiran etal, 

2012) 

DE               

(Beskirli 

etal, 2017) 

LSE GP1 GP2 Imp (%) 

SSE 27.947 27.664 20.567 19.757 17.652 n/a 17.652 10.7 

MAE  n/a  n/a 0.659 0.666 0.622 0.494 n/a 25 

 

The second comparison is done by artificial neural network (ANN) prediction of Günay (2016), which 

uses a data set consisting of six predictor variables (population, GDP per capita, inflation rate, 

unemployment rate, average summer temperature and average winter temperature) to predict gross 

electricity demand. The data ranges from 1975 to 2013 years. The comparison of our models with ANN 

of Günay (2016) is given in Table 4. Both the LSE and the GPs (GP1 or GP2) give better results than 

the ANN. In addition, LSE and GP1 are the best methods for the SSE and MAE metrics, respectively.  

 

Table 4. Results for the second data set analysis 

Performance Metric ANN (Günay, 2016) LSE  GP1 GP2 Imp (%) 

SSE 1758.2 1654.8   n/a 1655.6 5.9 

MAE 5.50 5.38 5.12   n/a 6.9 

 

In the paper, Günay (2016) also presents a reduced model excluding some of the insignificant variables. 

This model includes four variables (population, GDP per capita, inflation rate and avg. summer 

temperature). Regarding to this model, data of 2007-2013 period was used to show that ANN of Günay 

(2016) had superior performance than the official predictions of Ministry of Energy and Natural 

Resources of Turkey (TEIAS, 2017), ARIMA of Erdogdu (2007) and grey prediction of Akay and Atak 

(2007). Therefore, we just compared our models by the ANN of Günay (2016) on this data set. The 

results are given in Table 5, where RMSE is used as a performance metric instead of SSE to stick to the 

metric of Günay (2016). Note that RMSE can be calculated directly from SSE, thus LSE and GP2 can 

be used to find it. Due to the results reported in Table 5, we can say that LSE and GP models are 

significantly better than the ANN model. In addition, since the superiority of the ANN used in 

comparison has been shown over some statistical methods and grey prediction, we can say that also LSE 

and GP perform better than those methods. 

 

Table 5. Results for the third data set analysis 

Performance Metric ANN (Günay, 2016) LSE GP1 GP2 Imp (%) 

RMSE 5.7 1.03 n/a 1.00 82.5 

MAE 37.14 5.98 3.96 n/a 89.3 

 

6. Conclusion and Future Work 

Metaheuristics and ANNs are well accepted methods in fitting multiple linear equations to forecast 

energy demand of Turkey. In this study, it is shown that GP and LSE methods outperform 

metaheuristics and ANNs in terms of prediction quality for the considered forecasting problem. The 

methods we implemented improved the forecasting errors for all data sets used in earlier studies. This 

improvement could be as high as 89 percent, according to our findings. Moreover, the presented 

methods are easy in implementing and fast in running times. Considering the promising results found, 

as a future work, we plan to use these optimization methods with up-to-date data to forecast Turkey’s 

energy demand for the following years. We intend to apply stepwise linear regression to determine the 

predictor variables. In stepwise regression, variables are added or removed in succession, depending 

on whether their adding or removing results statistically significant contribution or not. 
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Abstract 

Flows around bluff bodies generate wakes and vortices downstream of flow. This phenomenon is known 

as vortex shedding and such vortices are generally named as von Kármán vortices after Theodore von 

Kármán. Although such a phenomenon is introduced to the scientific literature by the study of fluid 

flows, it is also observed in other fields such as Bose-Einstein condensation. Due to the complexity of 

the governing equations and involved complex geometries, such phenomena are generally studied 

numerically using different software and various turbulent modelling techniques. One of the other 

commonly utilized models for the study of nonlinear vortex shedding is the complex Ginzburg-Landau 

(GL) equation (Cohen et. al, 2003, Gillies, 1998, 2001, Roussopoulos et al., 1996). This dynamic 

equation is an equation in the nonlinear Schrödinger class and also appears in various other branches of 

science. In this paper, we investigate the effects of turbulent fluctuations on the vortex shedding in the 

frame of the GL equation. With this aim, we solve the GL equation using a spectral scheme with a 4th 

order Runge-Kutta time integrator. For the spectral solution, efficient FFT routines are employed. We 

analyze the possible modulation instabilities causes by turbulent fluctuations, their effects on the regular 

stable vortices, and possible rogue vortex formation (Bayındır, 2006a, 2006b). We also study the 

dynamics and statistics of such vortices under the effect of turbulent fluctuations. Our findings can be 

used for controlling, mitigating, or resonating the vortices and wake for many different engineering 

purposes including but are not limited to structural safety and serviceability considerations, noise 

reduction, energy harvesting, just to name a few. 

 

Keywords: Vortex shedding, Ginzburg-Landau equation, turbulent fluctuations, spectral method 

 

1. Introduction 

One of the most commonly studied phenomena in fluid dynamics is the vortex shedding and wake 

formation around bluff bodies. Although the presence of such vortices are introduced by von Kármán 

who investigated fluid flows, similar vortex and wake structures are also observed in some other 

branches of physics such as Bose-Einstein condensation. For the investigation of such vortices the 

commonly used approach is the simulation of the Navier-Stokes equation for complex geometries. Such 

studies generally utilize commercial fluid dynamics software. Another approach for similar studies is to 

use dynamic equations which are derivable from the Navier-Stokes equations. One of these equations is 

the complex GL equation. 

In this study, we investigate the effects of turbulent fluctuations on the dynamics and characteristics of 

the vortex shedding and wakefields modeled in the frame of the complex GL equation. With this 

motivation, we solve the complex GL equation using a spectral scheme with a 4th order Runge-Kutta 

integrator. In order to simulate a flow field around a circular cylinder located at the origin, the periodic 
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vanishing amplitude conditions are imposed. We show that depending on the strength of the turbulent 

fluctuations, the vortex wavelength and their reach downstream of the flow are significantly affected. 

The range of the complex amplitude is found out to be unaffected. We discuss our findings and their 

applicability in a real setting. 

 

2. Mathematical Formulation 

Flows around bluff bodies generate wakes and vortices downstream of flow. This phenomenon is known 

as vortex shedding and such vortices are generally named as von Kármán vortices after Theodore von 

Kármán. A dimensionless form of the Ginzburg-Landau equation (GLE) is given by  
2

2

2
( ) (1 ) (1 ) ( , )D N

A A A
U x A iC iC A A F x t

t x x

  
+ =  + + − + +

  
          (1) 

Here ( , )A x t  is the complex amplitude, , ,D NU C C   and are real constants that show the advection 

speed, diffusion, and nonlinearity constants (Cohen et al., 2003). The ( , )F x t is the forcing function and 

throughout this study unforced vortices are considered thus this function is selected as ( , ) 0.F x t = The 

wake growth parameter ( )x  is defined by  

( ) 'ox x =  +                                                                           (2) 

In order to analyze the effects of noisy perturbations of the characteristics and stability of von Kármán 

vortices we solve the GLE using a 4th order Runge-Kutta time-stepping algorithm and Fourier spectral 

method. This method is summarized below. Rewriting Eq. (1) as 
2

2

2
( ) (1 ) (1 ) ( , ) ( , , )D N

A A A
U x A iC iC A A F x t g A x t

t x x

  
= − +  + + − + + =

  
                    (3) 

Four slopes of the Runge-Kutta time-stepping algorithm can be calculated using 

1

2 1

3 2

4 3

( , , )

( 0.5 , 0.5 , )

( 0.5 , 0.5 , )

( , , )

n n

n n

n n

n n

m g A t x

m g A m dt t dt x

m g A m dt t dt x

m g A m dt t dt x

=

= + +

= + +

= + +

                                                              (4) 

Then the value of the complex amplitude and time at the next time step can be evaluated using 

1 1 2 3 4

1

( 2 2 ) / 6n n

n n

A A dt m m m m

t t dt

+

+

= + + + +

= +
                                                             (5) 

In order to prevent temporal instability, the time step is selected as 0.005dt = . The spatial derivatives 

in Eq. (3) can be computed spectrally using Fourier series by 

1[ [ ]]
A

F ikF A
x

−
=


  and 

2
1 2

2
[ [ ]]

A
F k F A

x

−
= −


                                

      (6) 

Here, F  denote the Fourier and 
1F −
 denote the inverse Fourier transform operations, and k  denotes 

the wavenumber vector which includes 512N = multiples (spectral components) of the fundamental 

wavenumber vector, 0k . The domain length for our simulations is selected to be 120L =  and the 

corresponding fundamental wavenumber, 0 2 /k L= , is used. 

 

3. Results and Discussion 

In order to illustrate the effects of turbulent fluctuation we first simulate the numerical simulation of the 

Ginzburg-Landau equation for the turbulent fluctuation (noise) free case. For this simulation, the 
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computational parameters are selected as 5U = , 1DC = , 0NC = , 3.57o = , ' -0.0434 = . The 

initial condition is selected as
4( ,0) 10 .A x −=  

 
Figure 1. Simulation of vortices downstream of a circular cylinder at 𝑥 = 0 for turbulent fluctuation 

free case. 

 

It is known that this selection of the parameters will lead to a growth parameter slightly larger than the 

critical growth parameter, thus growing wake oscillations will be observed downstream of the flow 

around a circular cylinder located at 0x = . We present the vortex street obtained downstream of such 

a flow in Fig. 1. Our results are in good agreement with finite element solutions presented by Cohen et 

al. (2003). The results illustrated in Fig. 1 clearly indicate that the wake structures have emerged 

downstream of a circular cylinder located at the origin. The vortex street and shedding are observable 

up to the location 90x  for a simulation time of 60.t   

 

Next, we investigate the effect of turbulent fluctuations on the dynamics and characteristics of the vortex 

street presented in Fig. 1. With this motivation, we impose uniformly distributed noise on the complex 

amplitude modeled in the frame of the GL equation. For this purpose, we impose noise on the complex 

amplitude of the  

( , ) ( , )noisefreeA x t A x t a rand= +                (2) 

where a  show a set of uniformly distributed random numbers in the interval of [ 1,1]rand  − . In a real 

setting, the noise refers to the turbulent fluctuations which can be realized by altering the flow field 

properties or flow geometry. In our simulations, we observe that when such a noise is imposed on the 

initial condition, the behavior of the wakefields remains unaffected. However, when such a noise is 

imposed on the complex amplitude at every time step of temporal evolution, the dynamics and 

characteristics of the vortex street are significantly affected. We present our findings in Fig. 2 for the 

vortex street depicted in Fig. 1 under the effect of a noise term with an amplitude of 0.05.a =  
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Figure 2. Simulation of vortices downstream of a circular cylinder at 𝑥 = 0 under the effect of 

turbulent fluctuations with an amplitude of 0.05a = . 

 

A comparison of Fig. 1 and Fig. 2 reveals that the wake and vortex structure downstream of a circular 

cylinder located at origin are significantly affected the turbulent fluctuations. The complex amplitudes 

of the wakes are not significantly affected, however, the lengths of vortices are increased which causes 

a reduction in the vortex wavenumber. Also, the extend on the vortices reduces to the downstream 

location of approximately 82.x   

 
Figure 3. Simulation of vortices downstream of a circular cylinder at 𝑥 = 0 under the effect of 

turbulent fluctuations with an amplitude of 0.1a = . 

 

Next, we investigate the effect of a stronger turbulent fluctuation of the dynamics and characteristics of 

the vortex street presented in Fig. 1. With this aim, we impose a noise with an amplitude of 0.1a =  at 

every time step of temporal evolution. The results depicted in Fig. 3 confirms that stronger fluctuations 

lead to further suppression of the vortices. Even under such a strong fluctuation large amplitude or rogue 
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vortices are not observed (Bayındır, 2006a, 2006b), however, the vortex width after the location 21x 

are significantly increased leading to smaller vortex wavenumbers. For engineering purposes, such 

results are very promising for the wake, vortex, and flow-induced vibration control. With the help of 

controlled turbulent fluctuations imposed on the flow field or flow geometry, the dynamics of the 

wavefields can be altered and controlled. Such a wake control strategy can be used to limit the flow-

induced vibration or when desired, to enhance them. Our findings can be used for avoiding the vortex 

shedding induced resonance or fatigue or can be used as a remedy to vortex control strategies involving 

the use of components such as helical strakes. Our results can also be used to enhance piezoelectric 

energy conversion of flow-induced wakes and vortices and their efficient measurement (Bayındır et al., 

2021), just to name a few. 

 

4. Conclusion 

In this paper, we have investigated the effects of turbulent fluctuations on the dynamics and 

characteristics of the vortex streets and shedding in the frame of the complex Ginzburg-Landau equation. 

We showed that, depending on the amplitude of the turbulent fluctuations the dynamics and 

characteristics of vortex streets can be significantly affected. In near future, we aim to extend our 

analysis to higher dimensions to investigate the effect of turbulent fluctuations on multi-dimensional 

vortices and we aim to perform spectral analysis using Fourier and wavelet analysis to analyze the 

frequency and space-frequency and time-frequency domain characteristics of vortex shedding control 

via turbulent fluctuation injections.  
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Abstract 

Widely known knapsack problem is an optimization problem which is in the non-deterministic 

polynomial-time complete (NP-C) class of problems. Hence, there is no known polynomial-time exact 

algorithm to guarantee an optimal solution for the Knapsack problem. A brute force search for the 

decision of choosing the most valuable items while remaining within the weight capacity limit has 2n 

possibilities for n items. Going through all of the possibilities requires O(2n) time complexity. With the 

heuristic improvements to the brute force search, better time complexities can be achieved. However, 

optimal solutions cannot be guaranteed by these heuristic improvements. Although it is not an exact 

solution technique, the neural network has the strength of learning from known samples and then solving 

similar problems in very short periods. In this study, we train a neural network with the previously 

solved knapsack problem instances. After the training phase, we experiment with the method using 115 

problem instances. 72% accuracy with the test data set is achieved in this experiment.  

 

Keywords: Knapsack problem, neural networks, optimization 

 

1. Introduction 

Among a finite number of items, whose weights and the benefits are known, choosing a subset with the 

maximum benefit without exceeding the maximum weight that can be carried is named as the 0-1 

Knapsack problem (KP01) (Lv et al., 2016). KP01 is known as a non-deterministic polynomial-time 

complete (NP-complete) problem (Basset et al., 2017). Dynamic programming, branch and bound, brute 

force, Lagrangian decomposition-based, genetic and other heuristic algorithms are proposed in the 

literature to solve the KP01 (Pan and Zhang, 2018). The algorithms proposed in the literature cannot 

guarantee to solve the KP01 to optimality in polynomial-time. Among the known heuristic methods, 

genetic algorithm with O(n) time complexity is the fastest of all (Shaheen and Sleit, 2016). 

Supervised learning algorithms are used for learning the function related to an input-output pair. With 

the learned function, the output of an input that is not seen before can be approximately predictable.  

Neural networks are widely used as a supervised learning mechanism to extract information from the 

data. A neural network can be trained using the known inputs and the outputs related to the phenomenon. 

With an unprecedented example of the phenomenon, the output corresponding to the input can be 

determined with the trained neural network in O(n) time. 

In this study, the use of neural networks is tested for solving the KP01 problem. We train a neural 

network using optimally solved KP01 examples. Using the trained neural network, we manage to 

achieve 72% similarity (in the optimal set of items) with the pre-solved KP01 test set examples. Hence, 

the proposed method may be suitable for the applications, where very fast but approximate solutions are 

required. Our findings also show that the use of neural networks can be a good candidate mechanism 

for solving hard optimization problems with similar input quickly after the neural network is trained. 
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To the best of our knowledge, there is no similar study reported before. Therefore, this study serves as 

preliminary work to explore whether there is a satisfactory reason for further studies in this direction. 

The paper is organized as follows: In Section 2, we describe the KP01 problem. In Section 3, we describe 

the proposed neural network technique for the KP01 problem. We discuss our experimental results in 

Section 4. Finally, we conclude and give some future research directions in Section 5. 

 

2. Problem Definition 

The decision version of the 0-1 knapsack problem is an NP-Complete problem. For a finite set of items 

U, the knapsack problem chooses a subset U’ from U (U’ ⊆ U), such that; ∑ 𝑤(𝑢) ≤ 𝑊𝑢∈𝑈′  and 

∑ 𝑣(𝑢)  ≥ 𝑉𝑢∈𝑈′ , where W is the total maximum capacity of the knapsack and V is the minimum desired 

benefit (value) (Salkin and De Kluyver, 1975). n item has 2n possible combinations according to their 

presence in the knapsack. A brute force algorithm, an exhaustive search that consists of enumerating all 

possible solution candidates and checking each candidate with respect to the problem’s objective, solves 

the optimization version of the 0-1 knapsack problem in O(2n) time by examining all the possibilities 

for satisfying the capacity requirement and comparing values of combinations to find the maximum. 

There are also heuristic techniques with better time complexities that cannot guarantee to give the 

optimal solution for KP01 (Wilbaut et al., 2008).  

3. Proposed Method 

A Neural network-based approach is proposed to solve the KP01 problem. Neural networks are formed 

by neurons that perform a simple operation on their inputs. Generally, a neuron holds a number between 

0 and 1. This number is called the activation of that neuron. Data is supplied to the network at the input 

layer. At the output layer, neurons’ activation levels are determined according to the input data. In other 

words, neural networks learn the function that maps the input data to the output data. They learn the 

pattern in the training samples. The learning process is the adjustments of the numerical weights on the 

synapses that connect the neurons to each other. Once the weights are learned, a neural network can map 

the input data to the output data according to the function that is learned. A simple neural network is 

shown in Figure 1. If the neural network is a classifier that discriminates the samples of two classes, the 

output layer may have two neurons as shown in Figure 1. Each neuron of the output layer can correspond 

to one class. Related output layer neurons with the sample input data can have higher activation level 

than that of the other output layer neurons. Hence, the classification of the input sample data can be 

achieved (Alpaydın, 2020). 

 
Figure 1. A representation of a simple neural network with two hidden layers. 
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The activation of each neuron can be determined by Equation 1.  

𝑎𝑙+1 =  𝜎(𝑊𝑙𝑎𝑙 + 𝑏𝑙)                                                                                                                               (1) 

Where 𝑎𝑙 is the activation level of neuron l, 𝑊𝑙 is the weight of the synapse connecting the neuron l to 

neuron l+1 and 𝑏𝑙  is the bias value of the neuron l. Finally, σ is the function (i.e., sigmoid) applied at the 

neuron l. In this way, activations of neurons propagate from the input layer through the output layer. 

Equation 1 is visualized in Figure 2. The role of the σ function is to map the activation of the neuron to 

a number between 0 and 1. Sigmoid function (σ) is given in Equation 2. 

𝜎(𝑥) =
1

1+𝑒−𝑥                                                                                                                                                    (2) 

                                                         

Figure 2. Activation of neurons. 

When the single neuron activation in Figure 2 is generalized into the neural network as shown in Figure 

1, the activations of neurons are given in Equation 3. 

[
 
 
 
 𝑎0

(1)

𝑎1
(1)

… .

𝑎𝑛
(1)

]
 
 
 
 

= 𝜎

(

 
 

[

 𝑤0,0 𝑤0,1    …     𝑤0,𝑛 
𝑤1,0 𝑤1,1 ⋯ 𝑤1,𝑛

⋮ ⋱ ⋮
𝑤𝑘,0 𝑤𝑘,1 ⋯ 𝑤𝑘,𝑛

]

[
 
 
 
 𝑎0

(0)

𝑎1
(0)

… .

𝑎𝑛
(0)

]
 
 
 
 

+ [

𝑏0

𝑏1

… .
𝑏𝑛

]

)

 
 

                                                                              (3) 

Hence, the activation 𝑎0
(1)

 is given in Equation 4.   

𝑎0
(1)

=  𝜎 (𝑤0,0𝑎0
(0)

+ 𝑤0,1𝑎1
(0)

+ ⋯+ 𝑤0,𝑛𝑎𝑛
(0)

+ 𝑏0)                                                                           (4) 

And, they can be calculated similarly for 𝑎1
(1)

 to 𝑎𝑛
(1)

. Therefore, in general activations of neurons are 

given as shown in Equation (5). 

𝑎(1) =  𝜎(𝑊𝑎(0) + 𝑏)                                                                                                                              (5) 

Learning of the neural network can be described as finding the correct weight (W) and bias (b) values. 

While training the network, initially these weights and bias take random values. The aim of a cost 

function is to minimize the gap between the desired output layer activations and the achieved output 

layer activations. This minimization approach is applied for all the training samples. This is done by 

going through the opposite direction of the gradient of the cost vector. The cost of a single neuron output 

at layer L (i.e., output layer) is the difference between the activation of the neuron (𝑎(𝐿)) and the desired 

activation of the neuron (y) (Zhang et al., 2019). The desired output of the neuron is known through the 

labeled training data. For a single training example, the cost function of a single neuron at layer L is 

given in Equation 6. 

𝐶0(… ) = (𝑎(𝐿) − 𝑦)
2
                                                                                                                               (6) 
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where 𝑎(𝐿) is given in Equation 7. 

𝑎(𝐿) =  𝜎(𝑤(𝐿)𝑎(𝐿−1) + 𝑏(𝐿))                                                                                                                   (7) 

We can define the input of the sigmoid function in Equation 7 as shown in Equation 8. 

𝑧(𝐿) = 𝑤(𝐿)𝑎(𝐿−1) + 𝑏(𝐿)                                                                                                                          (8) 

Hence, the result given in Equation 9 is obtained. 

𝑎(𝐿) =  𝜎(𝑧(𝐿))                                                                                                                                          (9) 

The cost function in Equation 6 depends on the changes of 𝑎(𝐿) and y. Consequently, changes in 𝑎(𝐿) 

depend on the changes in 𝑧(𝐿) as claimed in Equation 9. Finally, changes in 𝑧(𝐿) depend on the changes 

in 𝑤(𝐿), 𝑏(𝐿), and 𝑎(𝐿−1) as shown in Equation 8. The activation of the previous neuron (i.e. 𝑎(𝐿−1)) 

cannot be controlled directly. Likewise, a back propagation of the cost function to layer 𝑎(𝐿−2) is 

performed (Kolbusz et al., 2019). To investigate how 𝑤(𝐿) affects 𝐶0, 
𝜕𝐶0

𝜕𝑤(𝐿) is considered. With this aim, 

the chain rule can be applied as given in Equation 10. 

𝜕𝐶0

𝜕𝑤(𝐿) =
𝜕𝑧(𝐿)

𝜕𝑤(𝐿)

𝜕𝑎(𝐿)

𝜕𝑧(𝐿)

𝜕𝐶0

𝜕𝑎(𝐿) = 𝑎(𝐿−1)𝜎′(𝑧(𝐿))2(𝑎(𝐿) − 𝑦)                                                                            (10) 

Since Equation 10 is related to the cost of a single training example, we must take the average of the 

costs for all n training examples as shown in Equation 11. 

𝜕𝐶

𝜕𝑤(𝐿) =
1

𝑛
∑

𝜕𝐶𝑘

𝜕𝑤(𝐿)
𝑛−1
𝑘=0                                                                                                                                  (11) 

Note that, Equation 11 gives only one component of the gradient vector which includes all the weights 

and biases in the neural network. Hence, Equation 12 gives the gradient vector of the cost function 

∇𝐶 =

[
 
 
 
 
 
 
 
 

𝜕𝐶

𝜕𝑤(1)

𝜕𝐶

𝜕𝑏(1)

.

.

.
𝜕𝐶

𝜕𝑤(𝐿)

𝜕𝐶

𝜕𝑏(𝐿) ]
 
 
 
 
 
 
 
 

                                                                                                                                                (12) 

Similarly, for the sensitivity of the bias term to the cost function, we apply Equation 13. 

𝜕𝐶0

𝜕𝑏(𝐿) =
𝜕𝑧(𝐿)

𝜕𝑏(𝐿)

𝜕𝑎(𝐿)

𝜕𝑧(𝐿)

𝜕𝐶0

𝜕𝑎(𝐿) = 𝜎′(𝑧(𝐿))2(𝑎(𝐿) − 𝑦)                                                                                          (13) 

We should also investigate the sensitivity of the previous neuron activation (𝑎(𝐿−1)) to the cost function 

as given in Equation 14. 

𝜕𝐶0

𝜕𝑎(𝐿−1) =
𝜕𝑧(𝐿)

𝜕𝑎(𝐿−1)

𝜕𝑎(𝐿)

𝜕𝑧(𝐿)

𝜕𝐶0

𝜕𝑎(𝐿) = 𝑤(𝐿)𝜎′(𝑧(𝐿))2(𝑎(𝐿) − 𝑦)                                                                          (14) 

When the neurons at all layers are considered, Equation 10 can be rearranged as given in Equation (15).  
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𝜕𝐶0

𝜕𝑤𝑗𝑘
(𝐿) =

𝜕𝑧𝑗
(𝐿)

𝜕𝑤𝑗𝑘
(𝐿)

𝜕𝑎𝑗
(𝐿)

𝜕𝑧𝑗
(𝐿)

𝜕𝐶0

𝜕𝑎𝑗
(𝐿) = 𝑎(𝐿−1)𝜎′(𝑧(𝐿))2(𝑎(𝐿) − 𝑦)                                                                           (15) 

where, the indices j and k represent the connection of the neuron j at layer L to the neuron k at layer (L-

1). 

Similarly, for the effect of 𝑎𝑘
(𝐿−1)

 to the 𝐶0, Equation 16 is applied.  

𝜕𝐶0

𝜕𝑎𝑘
(𝐿−1) = ∑

𝜕𝑧𝑗
(𝐿)

𝜕𝑎𝑘
(𝐿−1)

𝜕𝑎𝑗
(𝐿)

𝜕𝑧𝑗
(𝐿)

𝜕𝐶0

𝜕𝑎𝑗
(𝐿)

𝑛𝐿−1
𝑗=0 = 𝑎𝐿−1𝜎′(𝑧(𝐿))2(𝑎(𝐿) − 𝑦)                                                                           (16) 

Considering Equation 14, the elements of the gradient vector can be found as given in Equation 17. 

𝜕𝐶

𝜕𝑤𝑗𝑘
(𝑙) = 𝑎𝑘

(𝑙−1)
𝜎′ (𝑧𝑗

(𝑙)
)

𝜕𝐶

𝜕𝑎𝑗
(𝑙)                                                                                                                                    (17) 

4. Results and Discussion 

For the experiments, a neural network with 100 input layer neurons that correspond to the benefit/weight 

(benefit per weight) values of the KP01 samples is used. Input layer values are normalized between 0 

and 1. Three hidden layers, each with 500 neurons and 100 output layer neurons, whose output values 

are between 0 and 1, are employed in the architecture of the neural network. Each neuron at the output 

layer takes the role to decide whether an item is taken to the knapsack, or not. If the output layer neuron 

activation is greater than ½, the corresponding item is taken to the knapsack. Otherwise, if the output 

value is less than or equal to ½, the corresponding item is not taken. ‘relu’ function and ‘sigmoid’ 

function are used for hidden layer neuron activation and output layer activation, respectively. ‘adam’ 

optimizer is employed for the gradient descent learning of the neural network parameters. Binary cross-

entropy loss function and 115 previously solved KP01 samples (100 for training, 15 for testing) are 

used. Each KP01 sample contains 100 items whose weight and benefit values are known.  

Each data point on the graphs given in Figure 3 represents the mean of corresponding 25 runs. At each 

run, training and test samples are chosen randomly among 115 total samples. For the implementation, 

the Python Tensorflow machine learning library is employed. The accuracies achieved in training and 

test sets versus the training epochs are given in Figure 3. 

 
Figure 3. Training and test accuracies versus training epochs. 
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After 27 epochs, as the accuracy of the training data set continues to increase, the accuracy of the test 

data set starts to decrease. This is caused by the overfitting with the training data set. At the 27th epoch, 

84% accuracy with the training data set and 72% accuracy with the test data set is achieved. At the 200th 

epoch, the accuracy with the training data set is 100% and the accuracy with the test data set is 63%.  

In this preliminary work, although there is no comparison with other references, we believe that 72% 

accuracy for the test data provides a satisfactory reason for conducting further studies with large 

instances and different hard optimization problems. 

 

5. Conclusion 

A neural network learning approach for solving KP01 problem is tested. It is observed that the proposed 

method may be suitable for the applications where fast but approximate solutions are required for the 

optimization problems with similar training and test data sets. Although the experiments conducted in 

this work do not include large-sized problems, this study serves as a preliminary claim for the benefit 

that neural networks can provide to solution of the optimization problems. Therefore, in the future, the 

approach must be tested with large instances of different hard optimization problems. 
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Abstract 

The complex Ginzburg-Landau (GL) equation is a well-known equation in various areas of physics that 

is also widely used to model vortex shedding phenomena occurring around a bluff body in a flow field, 

which is named as von Kármán vortex street (Roussopoulos and Monkewitz, 1996, Cohen et al., 2003). 

In addition, it describes nonlinear waves, second-order phase transitions, superconductivity, 

superfluidity, Bose-Einstein condensation, liquid crystals, and strings in field theory, etc. (Aranson and 

Kramer, 2002). Moreover, the GL equation can be utilized to find soliton solutions of many nonlinear 

systems (Akhmediev and Ankiewicz, 2001). Solitons are self-localized, solitary, nonlinear waves that 

emerge from a collision with a similar pulse having an unchanged shape and speed (Scott et al., 1973). 

Most of its applications lie in the domains of optics and fluid mechanics, which are attained by solutions 

of some familiar partial differential equations as Korteweg-de-Vries, modified Korteweg-de-Vries, 

Sine-Gordon, and nonlinear Schrödinger equations (Helal, 2002), apart from GL equation. In the present 

study, we aim to analyze the interaction of the soliton solutions of the GL equation with the von Kármán 

vortex street. For this purpose, we solve the GL equation via a spectral scheme that uses FFT routines 

for the space derivative and a 4th order Runge-Kutta time-stepping method to simulate vortices. 

Subsequently, we use the soliton solutions of GL constructed using analytical techniques and investigate 

their effects on Von Kármán vortices. We investigate how the vortex structure and stability are affected 

and whether the vortex fluctuations are reduced by the solitons. We discuss our findings and their 

possible usage in controlling the vortices by solitons for structural damage prevention and resonating 

for energy harvesting.  

 

Keywords: von Kármán vortex, solitons of Ginzburg-Landau equation, numerical model, soliton-

vortex interaction 

 

1. Introduction 

Vortices are subjects of a wide range of disciplines in fluid mechanics. They appear in the analysis of 

the lifting force of aircraft wings, whirlpools occurring in the ocean, the atmosphere of the planets, and 

are used even in the electromagnetic fields. Von Kármán vortex street is a pattern of repetitive vortices 

observed behind a blunt body in a flow field. In this study, the vortices are studied in the frame of the 

complex GL equation. Other than vortex street, GL equation is used to study nonlinear waves, second-

order phase transitions, superconductivity, superfluidity, Bose-Einstein condensation, liquid crystals, 

and strings in field theory, etc. (Aranson and Kramer, 2002). GL equation is also used to model nonlinear 

phenomena in the form of solitons, which are the self-localized solutions of nonlinear systems with an 

infinite number of degrees of freedom. They can be formed by collision with a similar pulse having 

unchanged shape and speed (Scott et al., 1973). Apart from the GL equation, solitons can be obtained 

from the nonlinear Schrödinger and Schrödinger-KdV equations as well. Fractional order forms of such 

 
* Corresponding Author 



2nd International Conference on Applied Mathematics in Engineering (ICAME’21)  

September 1-3, 2021 - Balikesir, Turkey 

 

98 

nonlinear wave equations have been solved by several numerical methods in previous studies (Yavuz et 

al., 2020, Yavuz et al., 2021). 

In the present study, we investigate the interaction of the von Kármán vortex street and soliton solutions 

of the complex GL equation. For this purpose, we solve the complex GL equation numerically using the 

Fourier spectral method with a 4th order Runge-Kutta time integrator. We impose three soliton solutions 

to the equation as an external forcing term and show that hereby a significant control over the von 

Kármán vortex street can be provided. Finally, we discuss our findings and their possible usage in 

controlling the vortices by solitons. 

 

2. Mathematical Formulation 

Von Kármán vortices are wakes and vortices downstream of flow formed by the flow around a bluff 

body, named after Theodore von Kármán. A model for their study is the Ginzburg-Landau equation 

(GLE). A dimensionless form of the GLE is given by  

𝜕𝐴

𝜕𝑡
+ 𝑈

𝜕𝐴

𝜕𝑥
= 𝜇(𝑥)𝐴 + (1 + 𝑖𝐶𝐷)

𝜕2𝐴

𝜕𝑥2 
− (1 − 𝑖𝐶𝑁)|𝐴|2𝐴 + 𝐹(𝑥, 𝑡).                         (1) 

Here 𝐴(𝑥, 𝑡) shows the complex amplitude. The parameters 𝑈, 𝐶𝐷, and 𝐶𝑁 are real constants that show 

the advection speed, diffusion, and nonlinearity. 𝜇(𝑥) is the wake growth parameter and is defined by  

𝜇(𝑥) = 𝜇0 + 𝜇′𝑥.                                  (2) 

The term 𝐹(𝑥, 𝑡) is the forcing function, for which the soliton solutions of the GLE and other nonlinear 

systems are used in this study (Akhmediev and Ankiewicz, 2001, Millot and Tchofo-Dinda, 2005). For 

the unforced simulations, 𝐹(𝑥, 𝑡) = 0 is set. To simulate the forced cases, the equation is solved by 

substituting one bright soliton and two dark soliton solutions into the 𝐹(𝑥, 𝑡) term. The bright soliton 

solution of the complex GL equation used is (Akhmediev and Ankiewicz, 2001)  

𝐹(𝑥, 𝑡) = 𝑎(𝑥)exp (𝑖𝜙(𝑥))exp (−𝑖𝜔𝑡)                                                       (3) 

where 𝜙(𝑥) =  𝜙0 + 𝑑 ln[𝑎(𝑥)] and 𝑎(𝑥) is defined as 

𝑎(𝑥) = 𝐵𝐶 sech(𝐵𝑥)                                                                     (4) 

where 

𝐶 = √
3𝑑𝜆2

2(2𝛽−𝜖)
  

𝐵 = √
𝛿

𝑑−𝛽+𝛽𝑑2                                                                    (5) 

𝑑 = 𝑑± =
3(1+2𝜖𝛽)±√9(1+2𝜖𝛽)2+8(𝜖−2𝛽)2

2(𝜖−2𝛽)
                                                

𝜔 = −
𝛿(1−𝑑2+4𝛽𝑑)

2(𝑑−𝛽+𝛽𝑑2)
  

and 𝛿, 𝛽 and 𝜖 are real constants. 𝛿 is the linear gain (or loss) at the (spatial or temporal) central 

frequency, 𝛽 is the spatial or temporal spectral filtering which is also called diffusion coefficient and 

has a condition of 𝛽 > 0, and 𝜖 is related to the nonlinear gain or absorption process (Akhmediev and 

Ankiewicz, 2001). 

 

Our first dark soliton solution has a similar structure with Eq. (3). For the case where the transverse 

velocity of the solution does not exist, its formula reduces to the following:  

𝐹(𝑥, 𝑡) =  [𝜅𝑢 tanh(𝜅𝑥) + (𝑑 + 2𝑖)
𝑤

𝑑
 ] exp [𝑖𝜙(𝑥)]exp (𝑖𝐾𝑥 − 𝑖Ω𝑡)                         (6) 

where  

𝑑 =
3(1+2𝜖𝛽)±√9(1+2𝜖𝛽)2+8(𝜖−2𝛽)2

2(𝜖−2𝛽)
  

𝑢2 =
3𝑑𝜆2

2(2𝛽−𝜖)
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𝜙(𝑥) =  𝑑 ln[cosh(𝜅𝑥)]                                                                 (7) 

Ω =
𝛿

2𝛽
+ 

2𝛽−𝜖

2𝜖
(𝐾2 − 𝜅2𝑑2 +

𝛿

𝛽
 )  

𝐾 = (𝜖𝑢)(𝑤/𝑑)   

and again 𝛿, 𝛽, 𝜖, 𝐾 and 𝑤 are real constants. The definition of 𝜆 is the same as the bright soliton case. 

The other dark soliton solution is a soliton of the nonlinear Schrödinger equation, which is a reduced 

form of the complex GL equation. The nonlinear Schrödinger equation has dissipative soliton solutions 

as well (Bayındır, 2016). The formulation that we use for dark soliton is as follows (Millot and Tchofo-

Dinda, 2005)  

𝐹(𝑥, 𝑡) = ±√𝑃0 tanh(𝑡/𝛿0)exp (𝑖𝛾𝑃0𝑥)                                                     (8) 

where 𝑃0 is the power required to create a soliton, and 𝛿0 is the initial pulse width. In our study, we 

calculate 𝑃0 as 

𝑃0 = ∫ |𝐴|2𝑑𝑥
𝐿

0
                                                                              (9) 

where 𝐿 is the length of the domain. In order to analyze the effect of the presence of the soliton forcing 

on the von Kármán vortices, we solve the GLE using a 4th order Runge-Kutta (RK4) time-stepping 

algorithm and Fourier spectral method. This method is briefly summarized here. We start by rewriting 

Eq. (1) as 

𝜕𝐴

𝜕𝑡
= −𝑈

𝜕𝐴

𝜕𝑥
+ 𝜇(𝑥)𝐴 + (1 + 𝑖𝐶𝐷)

𝜕2𝐴

𝜕𝑥2 − (1 + 𝑖𝐶𝑁)|𝐴|2𝐴 + 𝐹(𝑥, 𝑡) = 𝑔(𝑥, 𝑡).           (10) 

Then the four slopes of the RK4 algorithm are calculated by 

𝑚1 = 𝑔(𝐴𝑛, 𝐹𝑛(𝑥, 𝑡𝑛), 𝑡𝑛, 𝑥)    

𝑚2 = 𝑔(𝐴𝑛 + 0.5𝑚1𝑑𝑡, 𝐹𝑛(𝑥, 𝑡𝑛 + 0.5𝑑𝑡), 𝑡𝑛 + 0.5𝑑𝑡, 𝑥)     

𝑚3 = 𝑔(𝐴𝑛 + 0.5𝑚2𝑑𝑡, 𝐹𝑛(𝑥, 𝑡𝑛 + 0.5𝑑𝑡), 𝑡𝑛 + 0.5𝑑𝑡, 𝑥)                                                                 (11) 

𝑚4 = 𝑔(𝐴𝑛 + 𝑚3𝑑𝑡, 𝐹𝑛(𝑥, 𝑡𝑛 + 𝑑𝑡), 𝑡𝑛 + 𝑑𝑡, 𝑥) 

Starting from the initial conditions, the value of the complex amplitude and time at the next time steps 

are evaluated by 

𝐴𝑛+1 = 𝐴𝑛 + 𝑑𝑡(𝑚1 + 2𝑚2 + 2𝑚3 + 𝑚4)/6                        (12) 

𝑡𝑛+1 = 𝑡𝑛 + 𝑑𝑡 

The time step is selected as 𝑑𝑡 = 0.005 which does not cause any forms of instability. The spatial 

derivatives in  Eq. (3) can be computed spectrally using Fourier series by 

𝜕𝐴

𝜕𝑥
= 𝐹𝐹𝑇−1[𝑖𝑘𝐹𝐹𝑇[𝐴]]    and   

𝜕2𝐴

𝜕𝑥2 = 𝐹𝐹𝑇−1[𝑘2𝐹𝐹𝑇[𝐴]].          (13) 

Here, 𝐹𝐹𝑇denotes the Fourier and 𝐹𝐹𝑇−1 denotes the inverse fast Fourier transform operations. The 

parameter 𝑘 is the wavenumber vector which has entries of 𝑁 = 512 multiples of the fundamental 

wavenumber vector, 𝑘0. In our simulations, the length of domain is selected to be 𝐿 = 120 and the 

corresponding fundamental wavenumber, 𝑘0 = 2𝜋/𝐿, is used. 

 

3. Results and Discussion 

In order to illustrate the effects of soliton forcing on the dynamics and characteristics of the vortices, we 

first perform the numerical simulation of the GLE for the unforced case. With this motivation, the 

computational parameters are selected as 𝑈 = 5, 𝐶𝐷 = 1, 𝐶𝑁 = 0, 𝜇0 = 3.57, 𝜇′ = −0.0434 (Cohen et. 

al, 2003). The vortices found this way are depicted in blue in Figs.1-3. In order to investigate the effects 

of soliton forcing, we use the analytical soliton solutions given by Eqs. (3), (6), and (8). For the bright 

soliton solution, the computational parameters are selected as 𝛿 =  −0.03, 𝛽 = 0.9, and 𝜖 = 0.8. For 

the first dark soliton given by Eq. (6), the computational parameters are set to be 𝛿 = −0.01, 𝛽 = 0.1, 

𝜖 = 1.5, 𝐾 = 0 and 𝑤 = 0.  For the second dark soliton solution given by Eq. (8) the value of 𝛿0 = 0.1 

is used. The initial condition for all cases is selected as 𝐴(𝑥, 0) = 10−4. We selected the values of 𝛿, 𝛽, 

𝜖 and 𝛿0 with trial-and-error procedure so that the control over the vortex and their suppression are 
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achieved as much as possible and their stabilities are not adversely affected. We depict our findings for 

the soliton-controlled case in Figs. 1-3 below in red. For all the simulations, a simulation time of 𝑡 ≈ 60 

is used. 

 
Figure 1. Simulation of vortices downstream of a circular cylinder at 𝑥 = 0 and their interaction with a 

bright soliton at 𝑥 = 10. 

 

 

Figure 2. Simulation of vortices downstream of a circular cylinder at 𝑥 = 0 and their interaction with a 

dark soliton at 𝑥 = 10. 

In all three figures, the unforced vortex street has the same parameters and therefore the same pattern. 

It represents the growing wake oscillations will be observed downstream of the flow around a circular 
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cylinder located at 𝑥 = 0. The vortex shedding is detectable up to 𝑥 ≈ 90 for a simulation time of 𝑡 ≈

60 There is a decay in the amplitude as we move away from the location of the circular cylinder. For 

the unforced case, 𝐹(𝑥, 𝑡) = 0 is used in Eq. (1).  

The forced cases represent the interaction of the von Kármán vortex with the soliton solutions. In this 

case, the forcing term 𝐹(𝑥, 𝑡) in Fig. 1, Fig. 2 and Fig. 3 are given by Eqs. (3), (6) and (8), respectively. 

In line with our purpose, visible control over the vortices and their suppression is provided. As illustrated 

in Fig. 1 and Fig. 2, the bright soliton and the dark soliton reduce the number of vortex cycles after the 

bluff body to nearly null in the real part and only a slight increase in the amplitude is observed. The dark 

soliton forcing with a power 𝑃0 plotted in Fig. 3 similarly provides a reduction in the number of cycles. 

Moreover, the first wake in the vortex street is moved closer to the bluff body located at 𝑥 = 0. The 

stability is established more resiliently in forced solutions of each case. 

 

Figure 3. Simulation of vortices downstream of a circular cylinder at 𝑥 = 0 and their interaction with a 

dark soliton at 𝑥 = 10 with a power 𝑃0. 

 

These findings can be used to reduce the effects of vortex shedding on natural or artificial structures, 

such as vibration-induced resonance and fatigue. Besides, we showed that with soliton-formed feedback 

forcing, we can control the amount and decrease/control the frequency of the vortex shedding. These 

results can shed light upon many nonlinear vortex-induced vibration studies and their control via 

nonlinear mechanics. In the future, we aim to extend the study by applying FFT analysis to investigate 

the vortex dynamics in the spectral domain. Furthermore, a wavelet analysis will give clues about the 

location of the change of spectral properties, their possible benefits for many engineering applications. 

 

4. Conclusion 

In this paper, we have investigated the effects of the interaction of solitons of the complex Ginzburg-

Landau equation with the von Kármán vortex street. We showed that applying a soliton forcing upstream 

of the flow close to the bluff body, causes the vortex shedding dynamics and characteristics to 

remarkably change. Those changes appear to be a significant reduction in the vortex cycles and even 

their suppression. An insignificant amount of change is also observed in the amplitude of oscillations 

for many engineering purposes. Our results can bring many challenges and lead to new mechanisms for 
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the optimal control of the vortices for engineering applications such as reducing flow-induced vibrations 

and resonances. The feedback forces in the soliton form or interaction of solitons with vortices can be 

used for this purpose. As a further investigation, we aim to analyze the spectral effects of the soliton on 

the dynamics of vortex streets by performing an FFT or wavelet analysis. 
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Abstract 

Implicit methods can be considered as the best options for solving stiff initial value problems. The 

implicit time-integration algorithms are computationally costly, especially for solving large nonlinear 

systems. Then, an implicit approach must be optimized in terms of local degrees of freedom of algebraic 

systems of equations.  The multi-stage implicit algorithms such as the implicit Runge-Kutta methods 

(IRKM), implicit Lobatto methods or implicit Radau methods have more degrees of freedom than the 

linear multi-step methods. The linear multi-step methods such as the backward differentiation 

formulations (BDFs), the Adam-Bashford methods (ABMs) and the Adam-Moulton methods (AMMs) 

take advantage of the optimized degrees of freedom.  However, this set of algorithms has drawbacks of 

storage and order-preservation, especially for stiff problems. Here we show that multi-step methods 

generally require fewer time steps than the multi-stage methods to achieve the same accuracy for solving 

stiff problems. An inevitable question arises here:  Could a stiff problem solver have both optimized 

degrees of freedom and order preservation? It has been proven here that the implicit-explicit local 

differential transformation method (IELDTM) as a multi-derivative method has both of the vital 

features, by eliminating the existing disadvantages of explicit approaches originating from the 

differential transformation method (DTM). 

 

Keywords: Time integration, implicit algorithm, stiff problem, initial value problem, Taylor series 

 

1. Introduction 

Differential equations arise in modelling various natural phenomena, and their solutions provide 

valuable information about the related dynamical systems. In general, exact solutions of the equations 

cannot be derived all the time easily, or analytical expressions are very complicated to observe the 

behaviors of physical systems. Even for the large linear equation systems, analytical evaluations are not 

easy to implement, and symbolic calculations lead to enormous computational time. These drawbacks 

of analytical approaches can be handled by considering accurate and economic numerical methods. With 

the appropriate selection of parameters used in a numerical method, the convergence of the method can 

generally be controlled. However, stiff differential equations are not easy to handle and find reliable 

numerical solutions in the entire domain. Stiff behaviors are modelled by not only ordinary differential 

equations (ODEs) but also partial differential equations (PDEs) (Hairer and Wanner, 1996). Numerical 

techniques are also classified according to stiff and non-stiff problems in the literature (Hairer et al., 

1993-1996). The methods constructed to solve stiff problems are of particular interest due to the 

instability of classical methods. Unwanted oscillations, divergence or slow convergence are commonly 

faced in solving stiff problems under the consideration of some inappropriate numerical techniques.  

Stiff initial value problems (IVPs) are encountered in chemical kinetics, nonlinear mechanics, fluid 

dynamics, biochemistry and so on (Hairer et al., 1996). There are three main groups of time integration 

methods for IVPs: multi-step, multi-stage and multi-derivative (Hairer et al., 1993; Hairer and Wanner, 
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1996). The multi-stage implicit algorithms such as the Norsett's diagonally implicit Runge-Kutta method 

(NDIRKM) (Al-Rabeh, 1993), implicit Lobatto methods (LBM) (Pinto, 1997) or implicit Radau 

methods (RDM) (Ding and Tan, 2009) have more local degrees of freedom than the implicit multi-step 

and multi-stage methods. On the other hand, the implicit linear multi-step methods such as the backward 

differentiation formulae (BDF) (Akinfenwa et al., 2013) and the Adam-Moulton methods (AMM) (Han 

and Han, 2002) take advantage of the optimized degrees of freedom. Nevertheless, the linear multi-step 

methods have two crucial drawbacks: order reduction issues when the higher-order methods are 

hybridized with low order ones for bootstrapping and storage issues. Thirdly, the multi derivative time-

integration methods such as the local differential transform method (Tunc and Sari, 2019), automatic 

differentiation method (Abad et al., 2015), Taylor series methods (Ernsthausen and Nedialkov, 2020) 

and implicit-explicit local differential transform method (IELDTM) (Tunc and Sari, 2021a,b) provide 

optimized degrees of freedom and highly accurate results for solving IVPs. The IELDTM as a multi-

derivative time integration method (Tunc and Sari, 2021a,b) was seen to have distinct numerical 

characteristics and eliminates the well-known stability disadvantages of the explicit ones. The IELDTM 

is a direction free, arbitrarily high order and stability preserved time integration method for solving IVPs 

for ODEs (Tunc and Sari, 2021a) and IVPs reduced from parabolic PDEs (Tunc and Sari, 2021b). 

This study aims to compare the multi-derivative, multi-stage and multi-step time integration methods 

for solving stiff nonlinear advection-diffusion equation (the Burgers equation). The Burgers equation is 

reduced to a system of ODEs utilizing the Chebyshev spectral collocation method (ChSCM) in space. 

The performance results of all implicit time integration algorithms are extensively illustrated 

qualitatively and quantitatively. Throughout the study, we discuss both the advantages and 

disadvantages of each group of time-integration techniques. 

 

2. Model Equation and Spatial Discretization 

Behaviors of many physical processes encountered in models of advection mechanisms and diffusion 

transports lead to the Burgers equation. Thus, the equation arising in various physical areas of science 

are considered, 

𝑢𝑡 + 𝑢𝑢𝑥 = 𝜀𝑢𝑥𝑥, 𝑎 ≤ 𝑥 ≤ 𝑏              (1) 

with the boundary conditions 

𝑢(𝑎, 𝑡) = 𝑓1(𝑡)   and 𝑢(𝑏, 𝑡) = 𝑓2(𝑡),   𝑡 > 0                 (2) 

and initial condition 

𝑢(𝑥, 0) = 𝑔(𝑥),  𝑎 < 𝑥 < 𝑏                    (3) 

where 𝜀 > 0 is the kinematic viscosity constant and 𝑓1, 𝑓2 and 𝑔 are known functions. Applying the 

ChSCM to equation (1) (Tunc and Sari, 2021b) and imposing the boundary conditions leads to the 

following nonlinear IVP, 

𝑑𝒄

𝑑𝑡
= 𝑓(𝒄, 𝑡) = 𝜀�̅�𝒄 − 〈𝒄, �̅�𝒄〉 + 𝑭(𝒄, 𝑡),             (4)  

𝒄(0) = 𝑔(𝒙)   

where 𝒄(𝑡) = [𝑢(𝑥0, 𝑡), 𝑢(𝑥1, 𝑡), … , 𝑢(𝑥𝑁 , 𝑡)]𝑇 , 𝒙 = [𝑥0, 𝑥1, … , 𝑥𝑁]𝑇 , 𝑥𝑖  are the Chebyshev-Gauss-

Lobatto (CGL) collocation points, 𝑁 is the order of polynomial approximation, 〈. , . 〉 is the elementwise 

product operator, �̅� is the reduced form of the Chebyshev differentiation matrix (CDM) 𝐴 and �̅� = �̅�2 

(Tunc and Sari, 2021b). Imposing boundary conditions lead to reduction of the CDM 𝐴 to �̅� by removing 

the fist and the last rows and columns of 𝐴. Additionally, imposing boundary conditions yield the 

column vector 𝑭(𝒄, 𝑡) defined as 

𝑭(𝒄, 𝑡) = 𝜀 (𝐵:1𝑓1(𝑡) + 𝐵:(𝑁+1)𝑓2(𝑡)) − 〈𝒄, 𝐴:1𝑓1(𝑡) + 𝐴:(𝑁+1)𝑓2(𝑡)〉  
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where 𝐵:1, 𝐵:(𝑁+1), 𝐴:1 and 𝐴:(𝑁+1) denote first and last columns of the matrices 𝐴 and 𝐵 expect that first 

and last elements. Since 𝑢(𝑥, 0) = 𝑔(𝑥), the initial conditions at the CGL collocation points yield the 

initial condition of the IVP as 𝒄(0) = 𝑔(𝒙).   

 

3. Time Integration Methods 

This section introduces some implicit multi-step, multi-stage and multi-derivative time-integration 

methods for solving IVP (4). 

 

3.1 Multi-step Methods 

The general 𝑘 −step multi-step method for solving equation (4) can be expressed as 

∑ 𝛼𝑗𝒄𝑛+𝑗
𝑘
𝑗=0 = ∆𝑡 ∑ 𝛽𝑗𝒇𝑛+𝑗

𝑘
𝑗=0                (5) 

where 𝛼𝑘 ≠ 0 and ∆𝑡 =
𝑡𝑓

𝑀
. By defining 𝑘, 𝛼𝑗  and 𝛽𝑗 various multi-step algorithms can be derived. 

Implicit-explicit forms are available depending on the selection of 𝛽𝑘 as follows: 

• If 𝛽𝑘 = 0, the method is explicit. 

• If 𝛽𝑘 ≠ 0, the method is implicit. 

Implicit linear multi-step methods yield optimized degrees of freedom irrespective of 𝑘, i.e. 

𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 (𝑑𝑜𝑓) = 𝑁 − 1. In this study, we consider the backward differentiation methods 

(BDM) (Akinfenwa et al., 2013) and the Adam-Moulton methods (AMM) (Han and Han, 2002) 

illustrated in Table 1. 

 

Table 1. Iteration formulae of the backward differentiation and Adam-Bashford methods with various 

orders 

Group Order Formulae 

BDM 

2 
𝑐𝑛+2 −

4

3
𝑐𝑛+1 +

1

3
𝑐𝑛 =

2

3
∆𝑡𝑓𝑛+2, 𝑛 = 0,1, . . , 𝑀 − 2 

3 
𝒄𝑛+3 −

18

11
𝒄𝑛+2 +

9

11
𝒄𝑛+1 −

2

11
𝒄𝑛 =

6

11
∆𝑡𝑓𝑛+3, 𝑛 = 0,1, . . , 𝑀 − 3 

4 
𝑐𝑛+4 −

48

25
𝑐𝑛+3 +

36

25
𝑐𝑛+2 −

16

25
𝑐𝑛+1 +

3

25
𝑐𝑛 =

12

25
∆𝑡𝑓𝑛+4, 𝑛 = 0,1, . . , 𝑀 − 4 

AMM 

2 
𝑐𝑛+1 = 𝑐𝑛 +

1

2
∆𝑡(𝑓𝑛+1 + 𝑓𝑛), 𝑛 = 0,1, . . , 𝑀 − 1 

3 
𝒄𝑛+2 = 𝒄𝑛+1 + ∆𝑡 (

5

12
𝑓𝑛+2 +

2

3
𝑓𝑛+1 −

1

12
𝑓𝑛) , 𝑛 = 0,1, . . , 𝑀 − 2 

4 
𝑐𝑛+3 = 𝑐𝑛+2 + ∆𝑡 (

9

24
𝑓𝑛+3 +

19

24
𝑓𝑛+2 −

5

24
𝑓𝑛+1 +

1

24
𝑓𝑛) , 𝑛 = 0,1, . . , 𝑀 − 3 

 

3.2 The Multi-stage Methods 

The generalized implicit-explicit Runge–Kutta type multi-stage methods can be stated as follows: 

𝑘𝑖 = 𝑓(𝑡𝑛 + 𝑐𝑖∆𝑡, 𝑦𝑛 + ∆𝑡 ∑ 𝑎𝑖𝑗𝑘𝑗
𝑠
𝑗=1 )                                      (6) 

𝒄𝑛+1 = 𝒄𝑛 + ∆𝑡 ∑ 𝑏𝑖𝑘𝑖
𝑠
𝑖=1   

where 𝑠 is the stage number, and the corresponding Butcher table takes the form 

 

𝑐1 𝑎11 𝑎12 … 𝑎1𝑠 

𝑐2 𝑎21 𝑎22 … 𝑎2𝑠 

⁞ ⁞ ⁞ ⁞ ⁞ 

𝑐𝑠 𝑎𝑠1 𝑎𝑠2 … 𝑎𝑠𝑠 

 𝑏1 𝑏2 … 𝑏𝑠 
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Implicit and explicit multi-stage algorithms can be given by the following inferences: 

• 𝑎𝑖𝑗 = 0 for 𝑗 ≥ 𝑖 yields explicit multi-stage methods, 

• 𝑎𝑖𝑗 ≠ 0 for any 𝑗 ≥ 𝑖 yields implicit RK methods. 

In this study, we consider three widely used implicit multi-stage methods: Nørsett's three-stage, fourth-

order diagonally implicit Runge–Kutta method (DIRKM), the fourth-order Lobatto IIIB method 

(LBM4) and the third-order Radau IIA method (RDM3). The Butcher tables of these three multi-stage 

methods can be found in the literature (Hairer and Wanner, 1996).  

 

3.3 Multi-derivative Methods 

The general Taylor series based multi-derivative methods yield the following type of local approximate 

solutions 

𝒄𝑖(𝑡) = ∑ 𝐶𝑖(𝑘)(𝑡 − 𝑡𝑖)
𝑘 + 𝑂((𝑡 − 𝑡𝑖)

𝐾+1), 𝑡𝑖 − 𝜌𝑖 ≤ 𝑡 ≤ 𝑡𝑖 + 𝜌𝑖𝐾
𝑘=0              (7) 

where 𝐶𝑖(𝑘) =
1

𝑘!

𝑑𝑘𝒄

𝑑𝑡𝑘 is the differential transform of function 𝒄(𝑡) about 𝑡 = 𝑡𝑖. Taking the differential 

transform of main equation (4) provides a recursive relation and 𝐶𝑖(𝑘) can be written in terms of 𝐶𝑖(0) 

for all 𝑘 values. By assuming local representation (7), various versions of the multi derivative time-

integration methods such as the local differential transform method (Tunc and Sari, 2019), automatic 

differentiation method (Abad et al., 2015), Taylor series methods (Ernsthausen and Nedialkov, 2020) 

and implicit-explicit local differential transform method (IELDTM) has been studied for solving IVPs 

in the literature (Tunc and Sari, 2021a,b). 

In this study, we consider the recently derived IELDTM (Tunc and Sari, 2021a,b) for the calculation of 

𝐶𝑖(0) using the following continuity condition: 

𝒄𝑖+1(𝑡𝑖 + (1 − 𝜃)∆𝑡𝑖) = 𝒄𝑖(𝑡𝑖 + (1 − 𝜃)∆𝑡𝑖),                                             (8) 

∑ 𝐶𝑖+1(𝑘)(−𝜃∆𝑡𝑖)
𝑘𝐾

𝑘=0 = ∑ 𝐶𝑖(𝑘)((1 − 𝜃)∆𝑡𝑖)
𝑘𝐾

𝑘=0 + 𝑂((∆𝑡𝑖)
𝐾+1, 𝜃)                       (9) 

where 𝜃 ∈ [0,1]. Depending on the choice of 𝜃, various 𝐴 − and 𝐿 − stable cases of the IELDTM can 

be obtained with the optimized degrees of freedom (Tunc and Sari, 2021a,b).   

 

4. Numerical Experiments 

This section provides some numerical illustrations for solving two challenging test problems, and the 

described methods are compared through their computational mechanisms. 

 

Problem 1 (Tunc and Sari, 2021b) 

Consider the Burgers equation (1) with initial condition 

𝑢(𝑥, 0) = 𝑠𝑖𝑛 𝜋𝑥, 0 < 𝑥 < 1                                                          (10)  

and the homogenous boundary conditions 

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0, 𝑡 > 0.  (11)                                                                                                        

The exact solution of equation (1) under consideration of conditions (10)-(11) can be seen in the 

literature (Tunc and Sari, 2021b).  

 

Problem 2 (Seydaoglu, 2018) 

Consider the Burgers equation (1) with the polynomial type of initial condition 

𝑢(𝑥, 0) = 4𝑥(1 − 𝑥), 0 < 𝑥 < 1                                                          (12)  

and the homogenous boundary conditions 

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0, 𝑡 > 0.  (13)                                                                                                        

The literature (Seydaoglu, 2018) covers the exact solution of equation (1) with initial and boundary 

conditions (12)-(13). 
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In Figures 1A-B and 2A-B, the multi-derivative (CIELDTM4, CIELDTM3, CIELDTM2, CIELDTM1, 

BIELDTM4, BIELDTM3, BIELDTM2), multi-stage (NDIRKM4, RDM4, LBM4) and multi-step 

(BDF4, BDF3, BDF2 and AMM4) time integration methods are compared considering the step-sizes 

that are the threshold values to get ‖𝐸‖∞ = 10−5 error for solving Problems 1-2 with the parameter 

values 𝜀 = 0.001 and 𝑁 = 40. The corresponding CPU times to produce the results illustrated in Figures 

1A and 2A are comparatively shown in Figures 1B and 2B, respectively. According to Figures 1A-B 

and 2A-B, the following observations can be stated: 

• Order reductions of the implicit multi-step algorithms BDM and AMM are seen from the figures 

for solving the stiff ODE system as opposed to the IELDTMs and the implicit multi-stage 

methods. 

• Although the implicit multi-stage methods NDIRKM4, RDM4 and LBM4 satisfy order-

preservation, these algorithms yield much more local degrees of freedom than the rival ones. 

• The IELDTMs have better numerical characteristics by providing both optimized degrees of 

freedom and order-preservation property. 

• In terms of the required CPU times, the CIELDTM3 is the winner of the comparison. The 

RDM3, BIELDTM3 and CIELDTM4 follow the CIELDTM3, respectively for Problem 1. The 

RDM3, CIELDTM4 and BIELDTM3 follow the CIELDTM3, respectively for Problem 2. The 

lowest performances belong to the AMM4 for both problems due to the stability drawback and 

order reduction. 

• Overall, the IELDTMs are proven to solve ODEs reduced from singularly perturbed PDEs with 

optimal computational cost. 

 
Figure 1. A) Comparison of the various time-integration methods in terms of the required step sizes to 

get ‖𝐸‖∞ = 10−5 for solving Problem 1 with 𝜀 = 0.01 and 𝑁 = 40, B) Comparison of the various 
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time-integration methods in terms of the CPU times to get ‖𝐸‖∞ = 10−5 for solving Problem 1 with 

𝜀 = 0.01 and 𝑁 = 40. 

 

 
Figure 2. A) Comparison of the various time-integration methods in terms of the required step sizes to 

get ‖𝐸‖∞ = 10−5 for solving Problem 2 with 𝜀 = 0.01 and 𝑁 = 40, B) Comparison of the various 

time-integration methods in terms of the CPU times to get ‖𝐸‖∞ = 10−5 for solving Problem 2 with 

𝜀 = 0.01 and 𝑁 = 40. 

 

5. Conclusion 

In this study, various implicit time-integration techniques have been compared for solving stiff 

advection-diffusion equations in terms of accuracy and computational cost. The IELDTM as a multi-

derivative time integration technique has been the best option for solving the current system of IVPs 

reduced from the Burgers equation. The IELDTM has been seen to be a robust and versatile time-

integration technique for solving stiff IVPs by providing both order-preserving property and optimized 

dof. According to our numerical experiments, the multi-stage methods have been observed to preserve 

the numerical orders and yield large local dof. Additionally, the multi-step methods have been proven 

to need smaller time increments and larger CPU times than the rival methods to get the same accuracy. 
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Abstract 

The analysis of wave overtopping and overwash is fundamental to prevent damage to coastal structures 

and zones. There are many studies in the literature on this subject that shed light on today's research 

(Kobayashi et al., 1996, van der Meer, 1955). Wave overwash modeling methods are principally based 

on the prediction and generation of overtopping parameters as the essential inputs. Currently, available 

methods are inefficient for the evaluation of big field data. Recording and analyzing these data with 

efficient sensing are fundamentally significant for the observation, appraisal, and prevention of 

catastrophic results of coastal hazards. For this purpose, new algorithms should be developed, 

implemented, and tested. Compressive sensing technique (CS) is one of the most efficient algorithms 

that can beat old-style sensing approaches by utilizing far fewer samples while accomplishing accurate 

recovery (Candès et al., 2006a, Candès, 2006b). In this paper, we investigate the possible usage of the 

CS for the viable estimation and analysis of wave runup, overtopping, and overwash for coastal areas. 

Using the time-series data sets of wave overtopping and overwash constructed by empirical formulas 

proposed in (Hughes & Thornton, 2016), we show that CS may be utilized as a powerful instrument for 

the estimation, investigation, and analysis of wave overtopping and overwash in coastal areas and 

structural health monitoring. We discuss our results and remark on their importance and possible usage 

areas. The results of this study will be useful for the coastal engineering community in implementing 

wave runup, overtopping, and overwash reduction strategies to mitigate coastal hazards and the 

associated human and economic losses. 

 

Keywords: Wave runup, wave overtopping, wave overwash, compressive sensing 

 

1. Introduction 

Currently, the majority of the human population lives in coastal areas for some economic and 

humanitarian reasons. Hereby, the management, regulation, and protection of coastal areas are 

extremely necessary for people to lead their lives in an ideal way. In some cases where the structures 

protecting the coastal areas are insufficient to fulfill their function, some negative situations arise both 

for the coastal areas and for the people living there. Wave overtopping and wave overwash are among 

the most important of these cases. The event of water flowing over the crest of a coastal structure such 

as a seawall, a dike, a breakwater, etc., due to wave runup is called wave overtopping and the transport 

of water and sediment over the crest of a beach by water flowing is defined as wave overwash 

(Kobayashi et al., 1996). Wave overtopping not only has catastrophic consequences where small 

buildings collapse and people drown in floodwaters, but they can also cause serious hazards to the 

highway and even the railway. Wave overwash is dangerous in developed areas, as erosion of the beach 

face will leave these areas vulnerable after the storm and properties and infrastructures in these areas 
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will be damaged (Kobayashi et al., 1996).  Due to their importance, many studies have been carried out 

on these issues so far. Dune profile formation and overwash transport rates for different dune geometries 

are measured by Kobayashi et al., (1996), Hancock et al., (1995). Instantaneous discharge time series of 

overtopping waves by creating laboratory models with different slopes are analyzed by Hughes et al. 

(2016). A statistical model which identifies the exceedance probability of extreme waves' overtopping 

volume is discussed by Mori et al. (2003). This brief list and the references therein can give the reader 

an idea about the vastness of the subject. 

 

2. Problem Definition 

As can be understood from all these studies, analysis of wave runup, overtopping, and overwash is a 

must. Performing these analyzes effectively and quickly is extremely important in terms of efficiency 

in the results of the studies. One of the very useful algorithms that can be used for this purpose is 

compressive sensing (CS) (Candès et al., 2006a, Candès, 2006b). Although we see some applied 

examples of the CS algorithm, which has the main advantage of saving time and storage by achieving 

the same result with less data, in some coastal engineering problems (Malara et al., 2018, Bayındır, 

2019, Bayındır & Namlı, 2021, Bayındır, 2016), there is currently no example related to the field 

of wave runup, overtopping, and overwash, which is also the subject of this paper. The purpose of this 

paper is to be a pioneering paper and to guide future studies on this subject since there is no example in 

the current literature to our best knowledge.  

 

3. Proposed Method 

3.1. Methodology for the Probabilistic Time Series Analysis of Wave Overtopping 

There are numerous techniques and formulas in the literature to analyze the joint statistics of wave height 

and period distributions. One of such formula is given as (Goda, 2010) 

𝑃(𝜏|𝑥) =
𝑃(𝑥|𝜏)

𝑃(𝑥)
=

𝑎𝑥

√𝜋𝜈
exp [−

𝑎2𝑥2

𝜈2
(𝜏 − 1)2]                                                             (1) 

where P(x) denotes the probability distribution of the dimensionless wave height parameter 𝑥 = 𝐻/𝐻′ . 

Here 𝐻′ is an arbitrary reference wave height and the parameter a is 

𝑎 =
𝐻′

(8𝑚0)1∕2 = {

1 2√2⁄ , 𝑖𝑓  𝐻′ = 𝑚0
1∕2

= 𝜂𝑟𝑚𝑠

√𝜋 2⁄ , 𝑖𝑓  𝐻′ = �̅�

1, 𝑖𝑓  𝐻′ = 𝐻𝑟𝑚𝑠

                                               (2) 

It is well-known that for a linear, narrow-banded sea state P(x) is in Rayleigh form (Goda, 2010). In 

Equation (1), 𝑃(𝜏|𝑥) is the conditional probability of the dimensionless period parameter 𝜏 = 𝑇/�̅� for 

a given P(x) (Goda, 2010). �̅� shows the mean wave period and the parameter 𝜈 shows the narrowness 

of the spectral bandwidth and defined as  

𝜈 = [
𝑚𝑜𝑚2

𝑚1
2 − 1]

2
                                                                                       (3) 

where 𝑚𝑜, 𝑚1, 𝑚2 are the zeroth, first, and second moments of the spectrum. Following (Goda, 2010), 

the value of 𝜈 = 0.26 is used throughout this study. In order to generate random wave height and wave 

period series we follow the approach summarized below. We use the value 𝐻′ = 𝐻𝑟𝑚𝑠 = 2𝑚. Thus, the 

parameter a becomes a=1. We generate Rayleigh distributed random number using the MATLAB 

random number generator to represent the statistical distributions of wave heights. A histogram 

including 100 waves with 𝐻𝑟𝑚𝑠 = 2𝑚  generated this way is depicted in Figure 1. Then we compute the 

dimensionless wave height parameter x and calculate the conditional pdf given by Equation 1 for the 

typical range of 0 ≤ 𝜏 ≤ 3. After the calculation of pdf, we construct the cumulative pdf (cpdf) by 

simple summation formulas. Then, by means of the random inversion technique for this custom but not-

built-in cpdf, we obtain the random 𝜏 values corresponding to the random 𝑥 values. The pdf of  𝜏 
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calculated in this fashion numerically and its theoretical distribution calculated by integrating Equation 

1 numerically over the x parameter is depicted in Figure 2.  After the random 𝜏 values are obtained, the 

random wave periods are calculated by 𝑇 =  𝜏�̅� formula. For this calculation a wave field with �̅� = 8𝑠 

is considered and the resulting wave period histogram is depicted in Figure 3. 

 
 

Figure 1. A histogram of wave heights of 100 waves with  𝐻𝑟𝑚𝑠 = 2𝑚 

 

 

Figure 2. Probability distribution function for dimensionless time parameter 𝜏 = 𝑇/�̅�, numerically 

obtained by the random inversion technique vs obtained by integration of Eq.1 over x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. A histogram of wave period of the 100 waves with  �̅� = 8𝑠 
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The random wave height and the corresponding random wave period distributions are obtained using 

the approach summarized above. In Europe and at some other places on dikes and some other coastal 

protection structures are designed according to 2% exceedance criteria, that is the highest 2% of runup 

exceeds freeboard and causes overtopping. Thus, use this probabilistic thresholds criterion for 

simulating the time series of random wave overtopping. During the overtopping period of 0≤t≤T, where 

T denotes the individual wave period, the overtopping volume time series can be given by the Weibull 

formula (Hughes et al., 2016) 

𝑞(𝑡) =
𝑉𝑇𝑏

�̂�
(

𝑡

�̂�
)
(𝑏−1)

exp [− (
𝑡

�̂�
)
𝑏
]                                                                                     (4) 

where a shows the scale factor, b shows the shape factor and VT shows the volume of the overtopping. 

In this study the typical values of �̂�=0.4 and b=2 are used following (Hughes & Thornton, 2016). For 

the smallest wave causing overtopping, the overtopping volume is selected as VT=5.5 m3/m which is 

also the largest volume for Dutch overtopping simulator. It is known that the overtopping volume is 

nonlinearly related to the wave height (Mori et al., 2003), however, it can be linearized for small values 

of freeboard-to-wave amplitude ratio (Mori et al., 2003). Thus, for waves higher than the smallest 

causing overtopping, the overtopping volume is linearly scaled. One of the overtopping time series 

obtained by this methodology is depicted in Figure 4. 

 
Figure 4. A time series of random wave overtopping volume with 2% overtopping probability  

 

3.2. Review of the Compressive Sensing 

Compressive sensing (CS) which has attracted the attention of researchers from many branches of 

science from engineering to medicine and used by these researchers in their studies, achieved a 

significant breakthrough in signal processing. CS stated that a K-sparse signal 𝑞, with only K out of its 

N elements are nonzero, can be transformed into an orthogonal domain (i.e. Fourier) by the matrix ψ 

(orthogonal transformation matrix). Thus, the representation of the signal becomes 𝑞 = ψ�̂�.  In this 

formula �̂� shows the coefficient vector of transformation. After eliminating the zeros from the inputs, 

we can obtain 𝑞𝑠 = ψ�̂�𝑠, where 𝑞𝑠 identifies as the signal with non-zero components. A K-sparse signal 

𝑞 with N elements can be exactly recovered by  𝑀 ≥ 𝐶𝜇2(ϕ, ψ)𝐾log(N) measurements using the CS 

algorithm. In this formula, C symbolizes a positive constant, ϕ symbolizes the sensing basis and 

𝜇2(ϕ, ψ) is the mutual coherence between the sensing and transformation basis (Candès et al., 2006a, 

Candès, 2006b). After the random sampling using M random samples, one gets 𝑔 = ϕψ�̂�. Thus the CS 

problems becomes: 

min‖�̂�‖𝑙1 subjected to 𝑔 = ϕψ�̂�                                                                                                             (5) 

where ‖�̂�‖𝑙1 = 𝛴𝑖|�̂�𝑖|. Among all possible solutions of this optimization problem, its l1 solution becomes 

𝑞𝑐𝑠 = ψ�̂�. For a more comprehensive discussion of CS the reader is referred to Candès et al., (2006a), 



2nd International Conference on Applied Mathematics in Engineering (ICAME’21)  

September 1-3, 2021 - Balikesir, Turkey 

 

114 

Candès, (2006b), and its applications in coastal hydrodynamics to Bayındır, (2016, 2019) and Malara et 

al., (2018). 

 

4. Results and Discussion 

The aim of this paper is to propose and examine the applicability of the CS for the efficient sensing of 

the wave overtopping time series. The typical overtopping volume time series have a sparse behavior in 

the time domain as depicted in Figure 4. Thus, random compressive sampling is performed in the Fourier 

domain and the l1 minimization problem is solved in the temporal domain. In Figure 5, we depict the 

random wave overtopping time series which is also depicted in Figure 4, and its CS reconstruction. 

 
Figure 5. A time series of random wave overtopping volume with 2% overtopping probability.  

a) classical sampling b) compressive sampling reconstruction. 

 

In Figure 5, one can realize that the exact reconstruction of the random wave overtopping time series is 

exactly reconstructed by CS. The main advantage of the CS-based approach is that, although the 

classical observation system uses N=1699 classical samples, the CS-based observation system uses only 

K=40 random samples. This significant undersampling ratio brings a major advantage for coastal 

measurement and observation systems in terms of memory, cost, and time of measurement. 

Additionally, the CS-based approach is also beneficial for the interpolation and extrapolation of the 

missing data. Although this result is depicted for overtopping and overwash, it is straightforward to 

extend our finding to random wave runup. Such runup, if it exceeds the freeboard of the coastal structure 

or not, has a random multifrequency behavior in the time domain, and has a sparse representation in the 

spectral domain. Thus, random sampling can be performed in the temporal domain or a hybrid approach 

may be followed for the efficient analysis of typical random run-up time series. 

 

5. Conclusion 

In this study, we investigated the efficient measurement of the wave overtopping, overwash, and runup 

parameters by compressive sensing. Using a joint probability distribution of wave heights and periods 

and their random inversion, we constructed a wave overtopping time series with and freeboard 

exceedance probability of 2%. The resulting time series can be treated as a sparse signal in the time 

domain. We showed that such sparse data can be effectively reconstructed by compressive sampling 

using a far fewer number of samples than Shannon’s classical sampling theory states. Our findings will 

help coastal and ocean engineering communities to develop cheaper and faster overtopping, overwash, 

and runup measurement systems with lower cost and data storage requirements. Additionally, our 

findings can also be used to interpolate or extrapolate missing data.  
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Abstract 

In this study, an artificial neural network (ANN) method is proposed to capture the behaviours 

represented by various versions of the advection-diffusion equations. This technique uses a trial function 

that depends on a neural network and satisfies the initial and boundary conditions to approach the 

solution of the problem. The unknown parameters of the neural network are adjusted with the gradient-

descent and particle swarm optimization methods to minimize the cost function. The produced results 

are seen to be in good agreement with the exact solution and needed less computer storage.  

 

Keywords: Artificial Neural Networks (ANNs), Gradient Descent (GD), Particle Swarm Optimization 

(PSO), Partial differential equations (PDEs) 

 

1. Introduction 

ANNs that are the most important topic of machine learning methods simulate the human brain and 

neural systems and attract increasing attention in solving many problems arising in engineering and 

science.  Therefore, various researchers have paid their attention to the ANN methods due to their 

adaptability and resistance to errors in data (Lagaris et al., 1998). Recently, these methods have been 

used by researchers to obtain predictive solutions of partial differential equations that represent most 

real-world problems. Since solving these problems is often difficult and needed computationally 

intensive numerical techniques, various numerical techniques have been employed up to now. Several 

methods using the ANNs provide a closed-form solution that is infinitely differentiable. In addition, 

these methods require less computer storage than classical methods such as finite difference or finite 

element methods. However, since the topic is quite new, the studies are very limited. One of these studies 

is that Lagaris et al. (1998) presents an ANN method to solve initial and boundary value problems. After 

this study, various authors (Rassi, 2018; Baymani et al., 2010; Hayati and Karami, 2007; Eskiizmirliler 

et al., 2020) continued to be interested in ANN solutions of partial differential equations. 

In this work, predictive solutions of some linear and nonlinear partial differential equations are obtained 

by an artificial neural network method. In this technique, the dependent variable is approximated by a 

trial function that depends on a neural network solution and satisfies the boundary condition of the 

problem. The gradient descent and particle swarm optimization algorithms are successfully used to 

adjust the unknown parameters. The computed results revealed that this technique presents accurate and 

reliable solution with minimal computational effort.   

 

2. Artificial Neural Networks 

As indicated in the previous section, the ANNs are modelled by simulating the human brain and neural 

systems. In the mathematical model, an artificial neuron is called perceptron. Each neuron has a real 

valued input and each input is multiplied by an associate weight. The sum of these products are 
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associated to a bias. These computed values by passing through the activation function, the output of 

the neuron is obtained as feed-forward (FF). 

In this section, we investigate how the feed-forward neural network (FFNN) method can be adapted to 

capture the behaviours of the partial differential equation given by 

𝑢𝑡 = 𝑁(𝑡, 𝑥, 𝑢𝑥 , 𝑢𝑥𝑥 , … ),                                                                                                                            (1)                                                                                                                  

subject to certain boundary conditions. Here 𝑢 is a solution to be computed and also represented by a 

neural network.  

In the proposed technique, the trial function that satisfies the boundary conditions is expressed by 

𝛹𝑡(𝑥, 𝑡) = 𝐴(𝑥, 𝑡) + 𝐹(𝑥, 𝑡, 𝑁𝑒𝑡(𝑥, 𝑡, 𝑝)),                                                                                               (2) 

where 𝐴(𝑥, 𝑡) satisfies the boundary conditions and 𝑁𝑒𝑡(𝑥, 𝑡, 𝑝) is the output of the FFNN with the 

adjustable parameters 𝑝 = (𝛼, 𝛽, 𝜔, Ω) in the hidden layer of neural networks and inputs 𝑥 and 𝑡. The 

second term 𝐹 is constructed by employing the FFNN whose weights and bias are adjusted to solve the 

minimization problem  

𝑝 = 𝑚𝑖𝑛𝐸(𝑥, 𝑡; 𝑝),                                                                                                                                   (3)                                                                                                                  

𝐸(𝑝) =
1

2
∑ ∑ {𝑒𝑖𝑗}

2𝑀
𝑗=1

𝑁
𝑖=0 ,                                                                                                                      (4) 

𝑒𝑖𝑗 = (
𝜕𝛹𝑡

𝜕𝑡𝑗
 −  𝐹(𝑡, 𝑥1, … , 𝑥𝑛,

𝜕𝛹𝑡

𝜕𝑥𝑖
).                                                                                                         (5) 

To optimize the minimization problem (3), two different optimization methods, a gradient descent 

algorithm and particle swarm optimization, are performed comparatively. 

 

3. Solution of the Minimization Problem  

3.1 The Gradient Descent Method 

The gradient descent method is one of the most used optimization methods in neural networks studies. 

In predictive solution of a mathematical model, an error called cost function arises between the exact 

solution and computed solution, 

𝐸(𝑝) =
1

2
∑ ∑ {𝑒𝑖𝑗}

2𝑀
𝑗=1

𝑁
𝑖=0 ,                                                                                                            (6) 

where 𝑁𝑒𝑡(𝑥, 𝑡; 𝑝) = ∑ 𝑝𝑘 = (𝛼𝑘 , 𝑓(ꞷ𝑘𝑡 + 𝛺𝑘  𝑥 + 𝛽𝑘 ).
𝑚
𝑘=1                                                                 (7) 

The gradient descent method is constructed to optimize the cost function 𝐸(𝑝). Computations of this 

error includes the network outputs and the derivatives of the outputs with respect to any of its inputs.  

The algorithm of the gradient descent method can be given as follows: 

 

1.Input: 𝜆 – Learning rate 

2.Input: 𝐸(𝑥𝑖 ,𝑡𝑗) – Cost function to be minimized 

3.Input: 𝑝𝑘 = (𝛼𝑘 , 𝑓(ꞷ𝑘𝑡 + 𝛺𝑘  𝑥 + 𝛽𝑘 ) - initial parameter vector 

4.     𝑛 ← 0 – initialized step counts                                                                                                                                       

        𝑝0 = (𝛼0 , 𝑓(ꞷ0𝑡 + 𝛺0  𝑥 + 𝛽0) 

5. While 𝑝𝑛 not converged do                                                                                                                                     
   𝑛 ←  𝑛 + 1 – update step count 
    𝑝[𝑛 + 1] = 𝑝[𝑛] − 𝜆[𝑛]𝛻𝐹(𝑝[𝑛]) – update parameters 

 6. until convergence 

 7.End  

 

Here, 𝑝𝑛 = (𝛼𝑛 , 𝛽𝑛 , ꞷ𝑛, 𝛺𝑛  )  ∈ R𝑚, 𝑚 and 𝑛 denote, the number of neurons and the iteration number, 

respectively. 

In the gradient descent method, the selection of the parameter λ is of great importance for the 

convergence of the solution. Selecting a very small parameter causes time-consuming computations, 

while large values of the parameter produce divergent solutions. 
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3.2 The Particle Swarm Optimization 

The particle swarm optimization (PSO) that inspires by the behaviour of swarms, especially birds, fishes 

and bees is a population-based stochastic optimization method. Every bird, fish or bee is called as a 

particle that moves with a certain velocity and searches for the global best position after some iteration 

in searching space.  

The particle 𝑖 is defined by position vector 𝑥𝑖 and its velocity vector 𝑣𝑖 as follows (Eskiizmirliler et al., 

2020): 

𝑣𝑖[𝑛 + 1] = 𝑤𝑣𝑖[𝑛] (Inertia term) 

                 +𝑐1𝑟1(𝑥𝐵𝑒𝑠𝑡𝑖
[𝑛] − 𝑥𝑖[𝑛]) (Cognitive component) 

                 +𝑐2𝑟2(𝑔𝐵𝑒𝑠𝑡[𝑛] − 𝑥𝑖[𝑛]  (Social component) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (New location),  

where, 𝑤 represents the inertial weight and controls the influence of the previous velocity 𝑐1 and 𝑐2 

defines the coefficient of the self-recognition and 𝑟1 and 𝑟2 are the coefficient of social component 

chosen randomly in the interval [0,1]. The PSO algorithm can be given as follows: 

 

Initialize all particles of the swarm with randomly generated position and velocity 

Repeat 

     For each particle in the swarm  

     Calculated the Cost function  

     Update the local best position of the particle  

     Update the global best position of the swarm  

     End for 

     For each particle in the swarm  

          Update the velocity and position of the particle according to equation: 

             𝑣𝑖[𝑛 + 1] = 𝑤𝑣𝑖[𝑛] + 𝑐1𝑟1(𝑥𝐵𝑒𝑠𝑡𝑖
[𝑛] − 𝑥𝑖[𝑛]) +𝑐2𝑟2(𝑔𝐵𝑒𝑠𝑡[𝑛] − 𝑥𝑖[𝑛]  

               𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)  

     End for 

Until (Stopping criteria) 

 

4. Illustrative Examples 

In this section, the proposed method is performed for linear advection-diffusion and the inviscid Burgers 

equations, respectively. In order to apply the proposed technique, it is started by defining uniform space 

and time grid consisting of 𝑁𝑥 and 𝑁𝑡 points satisfying 𝑥𝑖 = 0,1,2, . . . , 𝑁𝑥 where ℎ𝑥 = 𝑖ℎ𝑥 and  

𝑡𝑗 = 0,1,2, . . . , 𝑁𝑡  where ℎ𝑡 = 𝑇 𝑁𝑡⁄ , respectively. 

The efficiency and adaptability of the approach are tested for different values of the model parameters. 

To evaluate the flexibility of the proposed techniques, their accuracy and efficiency with respect to 

various parameter values are estimated by the mean absolute error norm (MAE), the mean squared error 

(MSE) and the mean squared relative error (MSRE) are formulated as 

‖𝑢 − 𝛹‖𝑀𝐴𝐸 ≔
1

𝑁𝑥×𝑁𝑡
∑ ∑ |𝑢(𝑥𝑖 , 𝑡𝑗) − 𝛹(𝑥𝑖 , 𝑡𝑗)|

𝑁𝑡
𝑗=1

𝑁𝑥
𝑖=1 ,                                                                          (8) 

 ‖𝑢 − 𝛹‖𝑀𝑆𝐸 ≔ (
1

𝑁𝑥×𝑁𝑡
∑ ∑ |𝑢(𝑥𝑖 , 𝑡𝑗) − 𝛹(𝑥𝑖 , 𝑡𝑗)|

2𝑁𝑡
𝑗=1

𝑁𝑥
𝑖=1 )

1 2⁄

,                                                              (9) 

𝑀𝑆𝑅𝐸 ∶=  
‖𝑢−𝛹‖𝑀𝑆𝐸

‖𝑢‖𝑀𝑆𝐸
 .                                                                                                                               (10)                                 

In all cases, it is used a three-layer feed-forward neural networks having two inputs, one hidden layer 

with five neurons and one output and sigmoid activation function, that is 

𝑓(𝑧) = 1/(1 + 𝑒𝑥𝑝(−𝑧)).                 (11) 
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Example (4.1): (Mohebbi and Dehghan, 2010) Consider the advection-diffusion equation, 

𝑢𝑥 + 𝛽𝑢𝑡 =  𝛼𝑢𝑥𝑥 ,  (𝑥, 𝑡) ∈ [0,2] × [0,1]                                                                                                                  (12) 

 

with the exact solution   

𝑢(𝑥, 𝑡) = 𝑒𝑥𝑝(−𝛽𝑡)𝑠𝑖𝑛(𝑥 − 𝛼𝑡).                                                                                                                                     (13) 

 

The trial function can be written as follows:  

𝛹(𝑥, 𝑡) = ((2 − 𝑥)/2)𝑢(0, 𝑡) + (𝑥/2)𝑢(2, 𝑡) + (1 − 𝑡)𝑢(𝑥, 0) − ((2 − 𝑥)/2)(1 − 𝑡)𝑢(0,0) − (𝑥/2)(1 − 𝑡)𝑢(2,0).       (14) 

 

To train the network, for the Peclet numbers 1000 and 10000, the quadrature nodes are generated by 

discretization of a 51𝑥51 mesh, 𝑁𝑥 = 51 and 𝑁𝑡 = 51. Whereas for the Peclet numbers 20000, the 

nodes are generated by discretization of a 21𝑥21 mesh, 𝑁𝑥 = 21 and 𝑁𝑡 = 21. In both cases, the 

network is trained 100 times. 

 

Table 1. Comparison of the MAEs of Example (4.1) with different values of 𝑃𝑒, 𝛼 and 𝛽 

 

The efficiency of the present methods for different values of Peclet number (𝑃𝑒), 𝛼 and 𝛽 are presented 

in Table 1 in comparison with the work of Mohebbi and Dehghan (2010). As seen from the table, by 

increasing the Peclet number, the error of the ANN-PSO solution decreases. Figure 1 illustrates the 

behavioural solution of Example (4.1) obtained by the gradient descent and PSO algorithms. 

 
                                          (a)                                                                             (b) 

Figure 1. Solutions of the Example (4.1) obtained by (a) the gradient descent method and (b) the PSO 

 

𝑥 𝑃𝑒 = 1000, 𝛼 = 0.001 and  𝛽 = 1 𝑃𝑒 = 10000, 𝛼 = 0.0001 and  𝛽 = 1 𝑃𝑒 = 20000, 𝛼 = 0.0005 and  𝛽 = 1 

Mohebbi & 

Dehghan 

(2010) 

ANN-GD 

 

ANN-PSO Mohebbi & 

Dehghan 

(2010) 

ANN-GD  ANN-PSO Mohebbi & 

Dehghan 

(2010) 

ANN-GD ANN-PSO 

0.25 

0.50 

0.75 

1.00 

1.25 

1.50 

1.75 

1.4523e-06 

1.7519e-06 

1.8969e-06 

9.7462e-07 

1.0998e-07 

2.0490e-07 

2.8775e-07 

2.5526e-04 

1.1410e-04 

1.2878e-04 

1.2181e-04 

9.9214e-05 

6.7306e-05 

3.3387e-05 

1.3328e-06 

1.3751e-06 

1.0972e-06 

9.3018e-07 

9.0177e-07 

8.2894e-07 

5.2689e-07 

1.0552e-06 

4.9081e-06 

6.9429e-06 

2.5616e-05 

7.0254e-05 

1.5840e-04 

2.6866e-04 

2.5092e-05 

4.6371e-05 

6.4083e-05 

7.6229e-05 

7.9591e-05 

7.0356e-05 

4.4737e-05 

1.8221e-07 

6.0528e-07 

9.1696e-07 

1.0364e-07 

9.7891e-07 

7.9764e-07 

5.2539e-07 

1.0227e-04 

2.1975e-04 

3.4696e-04 

4.7082e-04 

6.5159e-04 

8.0199e-04 

7.4040e-04 

2.9131e-05 

2.8871e-05 

8.2184e-06 

2.1842e-05 

4.9435e-05 

6.2472e-05 

4.9332e-05 

7.2540e-07 

4.9164e-06 

8.5401e-06 

9.8358e-06 

8.5637e-06 

5.5743e-06 

2.3515e-06 
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Figure 2. The exact solution, the gradient descent and PSO for Example (4.1) with 100 times training 

and 𝑃𝑒 = 1000, 𝛼 = 0.001 and 𝛽 = 1 

Example (4.2): (Dehghan, 2005)    

We next focus on the advection-diffusion equation with α = 0.1 , β = 0.8 and (𝑥, 𝑡) ∈ [0,1] × [0,1]. 

The exact solution is 𝑢(𝑥, 𝑡) = √
20

20+𝑡
𝑒𝑥𝑝 [−

(𝑥−2−0.8𝑡)2

5(𝑡+20)
].                                                                 (15) 

To train the network, the quadrature nodes are generated by discretization of 𝑁𝑥 = 101 and 𝑁𝑡 = 101 

are trained 125 times.                               

As seen in Table 2, the MAEs of the solutions for both the gradient descent and PSO are compared in 

Example (4.2) with the literature (Dehghan, 2005). Behaviours of the solutions obtained by these 

methods have been shown in Figure 2. The computed results revealed that the proposed technique 

approximates better than the other methods and is applicable, effective and easy to use. 

 

Table 2. Comparison of the MAEs of Example (4.1) with the GD and PSO 

 Exact  

Value 

Dehghan (2004) 

(Second Order) 

Dehghan (2004) 

(Third order) 

Dehghan (2004) 

(Fourth order) 

ANN-GD ANN-PSO 

𝑥  MAE MAE MAE MAE MAE 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.4097319 

0.4364170 

0.4637347 

0.4915904 

0.5198801 

0.5484904 

0.5772989 

0.6061756 

0.6349830 

1.3e-03 

1.1e-03 

1.2e-03 

1.4e-03 

1.3e-03 

1.1e-03 

1.4e-03 

1.5e-03 

1.7e-03 

2.7e-03 

2.7e-03 

2.6e-03 

2.6e-03 

2.7e-03 

2.4e-03 

2.0e-03 

2.3e-03 

2.5e-03 

3.4e-05 

3.2e-05 

3.1e-05 

2.9e-05 

2.7e-05 

2.7e-05 

2.5e-05 

2.2e-05 

2.0e-05 

4.7220e-06 

8.0930e-06 

1.0227e-05 

1.1239e-05 

1.1241e-05 

1.0347e-05 

8.6680e-06 

6.3132e-06 

3.3893e-06 

4.2158e-09 

1.0697e-07 

2.6273e-07 

4.2864e-07 

5.6642e-07 

6.4404e-07 

6.3715e-07 

5.3007e-07 

3.1655e-07 
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                                             (a)                                                                             (b) 

Figure 3. Solutions of Example (4.2) obtained by (a) GD and (b) PSO 

 
Figure 4. The exact solution, the GD and PSO solutions for Example (4.2) with 125 times training 

 

Example (4.3): (Wazwaz, 2009) Let us consider the nonhomogeneous inviscid Burgers equation  

𝑢𝑥 + 𝑢𝑢𝑡 = 𝑥 + 𝑥𝑡2, (𝑥, 𝑡) ∈ [0,1] × [0,1]                                                                                           (16)                                                                             

and exact solution is 𝑢(𝑥, 𝑡) = 𝑥𝑡.                                                                                                               (17) 

To train the network, mesh grid points 𝑁𝑥 = 101 and 𝑁𝑡 = 101 run for 120 iterations. 

 

Table 3. Comparison of the error norms MAE, MSE and MSRE for the GD and PSO approaches 

 

 

 

 

 

 

 

 

 

 

 

 

 Types of 

Errors 

ANN-GD ANN-PSO 

MAE 

 

 

MSE 

 

 

MSRE 

Min 

Worst 

Mean 

Min 

Worst 

Mean 

Min 

Worst 

Mean 

5.7196e-04 

1.4041e-01 

4.3632e-02± 3.1666e-02 

7.6250e-04 

1.8132e-01 

5.6303e-02± 4.0882e-02 

8.7076e-07 

2.0707e-04 

6.4297e-05± 4.6686e-05 

5.0637e-03 

1.0892e-01 

4.1464e-02± 2.8448e-02 

7.2376e-03 

1.4087e-01 

5.3330e-02± 3.6610e-02 

8.2653e-06 

1.6087e-04 

6.0902e-05± 4.1808e-05 
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Figure 5. Solutions of Example (4.3) obtained by (a) the GD method and (b) PSO 

 
Figure 6. The exact solution, the GD and PSO solutions for Example (4.3) with 120 times training 

The computed error norms of different solutions for Example (4.3) are listed in Table 3 and the 

behaviours of the solutions obtained by the GD and PSO are sketched in Figure 3. The computed results 

revealed that the current method seems to be accurate and reliable with minimal computational effort. 

 

5. Conclusions 

Solving PDEs requires computationally intensive numerical techniques. Therefore, in this study, an 

artificial neural network method has been presented to capture the behaviour of some linear and 

nonlinear advection-diffusion equations in a more efficient way. The neural network method has been 

seen to allow converting any partial differential equation into a single objective unconstrained 

optimization problem. To solve the optimization problem in obtaining the unknown parameters, the 

gradient descent and particle swarm optimization methods have been found out to be successfully 

applicable. In order to validate the performance of the proposed approach, the errors between the 

computed solutions, the exact solution and the literature have been compared. Ultimately, the computed 

results have revealed that the proposed method produces accurate results and needs less computational 

effort and storage space than the conventional techniques; hence, it is concluded that solving the PDEs 

through the presented method is a reliable and flexible alternative.  
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Abstract 

In this study, we consider Hermite-Bell based Stirling polynomials of the second kind and derive some 

useful relations and properties including some summation formulas related to the Bell polynomials and 

Stirling number of the second kind. Then, we introduce Hermite-Bell based Bernoulli polynomials of 

order   and investigate multifarious correlations and formulas including some summation formulas 

and derivative properties. Also, we acquire diverse implicit summation formulas and symmetric 

identities for Hermite-Bell based Bernoulli polynomials of order  . Moreover, we analyze some special 

cases of the results.   

 

Keywords: Hermite polynomials, Bernoulli polynomials, Bell polynomials, mixed type polynomials 

 

1. Introduction 

Special polynomials and numbers possess many importance in multifarious areas of sciences, such as 

physics, mathematics, applied sciences, engineering and other related research fields covering, 

differential equations, number theory, functional analysis, quantum mechanics, mathematical analysis, 

mathematical physics, and so on, see all references and also each of the references cited therein. For 

example; Bernoulli polynomials and numbers are closely related with the Riemann zeta function which 

possesses a connection with the distribution of prime numbers, (Srivastava et al., 2012 and Srivastava 

et al., 1984). Some of the most significant polynomials in the theory of special polynomials are the Bell, 

Euler, Bernoulli, Hermite, and Genocchi polynomials. Recently, the aforesaid polynomials and their 

diverse generalizations have been densely considered and investigated by many physicists and 

mathematicians, see all references and see also the references cited therein. 

 
2.  Preliminaries 

The Stirling polynomials ( )2 , :S n k x  and numbers ( )2 ,S n k  of the second kind are given by the 

following exponential generating functions (Bell, 1934, Carlitz, 1980, Khan et al., 2008, Kim et al., 

2017): 

( )
( )

( )
( )

2 2

=0 =0

1 1
, : = and , = .

! ! ! !

k k
t tn n

tx

n n

e et t
S n k x e S n k

n k n k

 − −
   (1) 

In combinatorics, Stirling number of the second kind ( )2 ,S n k  counts the number of ways in which n  

distinguishible objects can be partitioned into k  indistinguishable subsets when each subset has to 

contain at least one object. The Stirling numbers of the second kind can also be derived by the following 

recurrence relation for 0  : 
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( )( )2

=0

= , ,
n

n

k
k

x S n k x   (2) 

where ( )
n

x  = ( 1)( 2) ( ( 1))x x x x n− − − −  for n  with ( )
0

= 1x . 

For each integer 0k  , ( )
=0

=
n k

k l
S n l  is named the sum of integer powers. The exponential 

generating function of ( )kS n  is as follows (Pathan et al., 2015): 

( )
( )1

=0

1
= .

! 1

n tk

k t
k

t e
S n

k e

+ −

−
   (3) 

The bivariate Bell polynomials are defined as follows: 

( )
( )1

=0

; =
!

n ty e
xt

n

n

t
Bel x y e e

n

 −

   (4) 

When = 0x , ( ) ( )0; :=n nBel y Bel y  called the classical Bell polynomials (also called exponential 

polynomials) given by means of the following generating function (Boas et al., 1958, Kim et al., 2015): 

( )
( )1

=0

= .
!

n ty e

n

n

t
Bel y e

n

 −

   (5) 

The Bell numbers nBel  are attained by taking = 1y  in (2.5), that is ( ) ( )0;1 = 1 :=n n nBel Bel Bel  and 

are given by the following exponential generating function (Boas et al., 1958, Kim et al., 2015): 

( )1

=0

= .
!

n te

n

n

t
Bel e

n

 −

   (6) 

The Bell polynomials considered by Bell (Bell., 1934) appear as a standard mathematical tool and arise 

in combinatorial analysis. Since the first consideration of the Bell polynomials, these polynomials have 

been intensely investigated and studied by several mathematicians, (Boas et al., 1958, Kim et al., 2015) 

and see also the references cited therein. 

The usual Bell polynomials and Stirling numbers of the second kind satisfy the following relation (Kim 

et al., 2015) 

( ) ( )2

=0

= , .
n

m

n

m

Bel y S n m y   (7) 

The Bernoulli polynomials 
( ) ( )nB x


 of order   are defined as follows (Acikgoz et al., 2018, Dere et 

al., 2013, Kim et al., 2019, Kim et al., 2021): 

( ) ( ) ( )
=0

= < 2 .
! 1

n
xt

n t
n

t t
B x e t

n e







 
 

− 
   (8) 

Setting = 0x  in (8), we get 
( ) ( ) ( )

0 :=n nB B
 

 known as the Bernoulli numbers of order  . We also note 

that when =1  in (8), the polynomials 
( ) ( )nB x


 and numbers 
( )
nB


 reduce to the classical Bernoulli 

polynomials ( )nB x  and numbers nB . 

The Hermite polynomials ( , )nH x y  (Dere et al., 2012, Pathan et al., 2015) are defined by 

[ ]
22

=0

( , ) = ! .
!( 2 )!

n

r n r

n

r

y x
H x y n

r n r

−

−
   (9) 

It is easily seen from (9) that 

( ,0) = .n

nH x x  

The generating function for Hermite polynomials ( , )nH x y  are given by 
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2

=0

= ( , ) .
!

n
xt yt

n

n

t
e H x y

n


+    (10) 

 
3.  Hermite-Bell Based Stirling Polynomials of the Second Kind 

We consider Hermite-Bell mixed polynomials by 

( )
( )2 1

=0

, , = ,
!

n txt yx z e

n

n

t
HB x y z e

n

 + + −

   (11) 

which reduce to usual Hermite polynomials (10) when = 0z  and familiar Bell polynomials (5) when 

= 0y . 

Definition 1 The Hermite-Bell based Stirling polynomials of the second kind are introduced by the 

following generating function: 

( )
( ) ( )2 1

2

=0

1
, : , , = .

! !

k
tn txt yx z e

n HB

et
S n k x y z e

n k

 + + −−
   (12) 

Remark 1 Replacing = 0x  in (12), we attain extended Bell-Stirling polynomials ( )2 , : ,HB S n k y z  of 

the second kind, which are also a new generalization of the usual Stirling numbers of the second kind 

in (1) as follows: 

( )
( ) ( )2 1

2

=0

1
, : , = .

! !

k
tn tyt z e

n HB

et
S n k y z e

n k

 + −−
   (13) 

Remark 2 Replacing = = 0x y  in (12), we obtain Bell-Stirling polynomials ( )2 , :Bel S n k z  of the 

second kind, which are also a new generalization of the usual Stirling numbers of the second kind in 

(1), as follows: 

( )
( ) ( )1

2

=0

1
 , : = .

! !

k
tn tz e

Bel

n

et
S n k z e

n k

 −−
  

Proposition 1 The following correlation holds for non-negative integer :n

( ) ( ) ( )2 2

=0

, : , , = , ; , .
n

HB n u

u

n
S n k x y z S u k HB x y z

u
−

 
 
 

  (14) 

Proposition 2 The following relations hold for non-negative integers n  and k  with :n k  

( ) ( )2 2

=0

, : , , =  , : ,
n

n l

HB HB

l

n
S n k x y z S l k y z x

l

− 
 
 

   (15) 

and 

( ) ( ) ( )2 2

=0

, : , =  , : ,
n

HB Bel n l

l

n
S n k x y S l k z H x y

l
−

 
 
 

   (16) 

Proposition 3 The following summation formulae for Hermite-Bell based Stirling polynomials of the 

second kind hold for non-negative integers n  and k  with :n k  

( ) ( )2 1 2 2 1 2

=0

, : , , =  , : , ,
n

n u

HB HB

u

n
S n k x x y z S u k x y z x

u

− 
+  

 
  (17) 

and 

( ) ( ) ( )2 1 2 2 1 2

=0

, : , , =  , : , , .
n

HB HB n u

u

n
S n k x y z z S u k x y z HB z

u
−

 
+  

 
  (18) 

Proposition 4 The following relation is valid for non-negative integer :n  
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( )
( )

( ) ( )1 2
2 1 2 2 1 2 2

=01 2

! !
, : , , = , : , , ,

!

n

HB

u HB

nk k
S n k k x y z S u k x y z S n u k

uk k

 
+ − 

+  
  (19) 

Proposition 5 The following relation holds for non-negative integer :n  

( ) ( ) ( )2 2

=0

, = , : , , , ,
n

n u

u HB

n
S n k S u k x y z HB x y z

u
−

 
− − − 

 
  (20) 

 

4  Hermite-Bell based Bernoulli Polynomials of order   

In this section, we introduce Hermite-Bell based Bernoulli polynomials of order   and investigate 

multifarious correlations and formulas. 

Definition 2 The Hermite-Bell based Bernoulli polynomials of order   are defined by the following 

exponential generating function: 

( ) ( )
( )2 1

=0

; =
! 1

n txt yt z e

n t
n HB

t t
B x y e

n e




 + + − 

 
− 

   (21) 

Remark 3 In the special case = 0x  in (21), we acquire the extended Bell-Bernoulli polynomials of 

order  , which are also new extensions of the Bernoulli numbers of order   in (8), as follows: 

( ) ( )
( )2 1

=0

, = .
! 1

n tyt z e

n t
n HB

t t
B y z e

n e




 + − 

 
− 

   (22) 

We also note that 
( ) ( ) ( )1

; , :=  ; ,HB n HB nB x y z B x y z  

which we call the Hermite-Bell based Bernoulli polynomials. 

We now provide the following theorems without their proofs that can be done by using (21) and series 

manipulation methods. 

Theorem 1 Each of the following summation formulae hold for 0n : 

( ) ( ) ( ) ( )
=0

; , = , ,
n

HB n k n k

k

n
B x y z B HB x y z

k

 

−

 
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 

   (23) 

( ) ( ) ( ) ( ) ( )
=0

; , = ;
n

HB n k n k

k

n
B x y z B x y Bel z

k

 

−

 
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 

   (24) 

( ) ( ) ( ) ( )
=0

; , = ,
n

n k

HB n k

k HB

n
B x y z B y z x

k

  − 
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 

   (25) 

Theorem 2 The following relationship is valid for 0 :n  

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2
1 2 1 2 1 2 1 1 1 2 2 1

=0

; , = ; , ; ,
n

HB n k n kHB
k HB

n
B x x y y z z B x y z B x y z

k

   +

−

 
+ + +  

 
  (26) 

Theorem 3 The difference operator formulas for the Hermite-Bell based Bernoulli polynomials hold 

for n : 

 

( ) ( ) ( ) ( )1 ; , =  ;HB n HB nB x y z n B x y
x

 

−




  (27) 

and 

( ) ( ) ( ) ( ) ( ) ( ) ; , =  ; ,  1; , .HB n HB n HB nB x y z B x y z B x y z
z

  
− +


 (28) 

Theorem 4 The following summation formula holds for 0n : 
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( )
( ) ( ) ( ) ( )1 1

=0

11; ,  ; , 1
; , = =  ; ,

1 1

n
HB n HB n

n HB k

k

nB x y z B x y z
HB x y z B x y z

kn n

+ +
++ −  

 
+ +  

     (29) 

Theorem 5 The following explicit formula holds for 0n : 

( ) ( )
( )1

1 1

=0 =0

1 ,
; , = 1

1

k
k l nk

HB n

k l

k H l x y
B x y z y

l n

 −
− − +

− + 
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+ 
  

Theorem 6 The following formula is valid for 0n  and k  : 

( )
( )

( ) ( ) ( ) 2

=0

! !
; , = ; , ,

!

n k
k

n HB l

l

n kn k
HB x y z B x y z S n k l m

ln k

+
−+ 

+ − 
+  

  (30) 

Theorem 7 The following correlation holds for non-negative integers n :  

( ) ( ) ( ) ( ) ( ) ( )2

=0 =0

; , = ,
n

HB n n lk HB
l k

n
B x y z x S l k B y

l

 


−

 
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 

  (31) 

Theorem 8 The following summation formula holds for non-negative integers k  and n  with n k :  

( )
( )

( ) ( ) ( )1 2 1 2 1 2 2 2 2 2 1 1 2

=0

! !
, , =  ; ,  , : , ,

!

n k
k

n HB l HB

l

n kn k
HB x x y y z z B x y z S n k l k x y z

ln k

+ + 
+ + + + − 

+  


(32) 

Recently, implicit summation formulas and symmetric identities for special polynomials have been 

studied by some mathematicians, cf. (Khan et al., 2008, Pathan et al., 2015) and see the references cited 

therein.  

We note that the following series manipulation formulas hold (Pathan et al., 2015): 

=0 , =0

( )
( ) = ( )

! ! !

N n m

N n m

x y x y
f N f n m

N n m

 +
+   (33) 

Theorem 9 The following implicit summation formula holds: 

( ) ( ) ( ) ( ) ( )
,

, =0

; , = ; ,
k l

n m

HB k l k l n mHB
n m

k l
B x y z x B y z

n m

 
 

+

+ + − −

  
−  
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  (34) 

Proof.  Upon setting t  by   t u+  in (21), we derive 

( ) ( ) ( ) ( ) ( )
2

1

, =0

= ; , .
1 ! !

k lt uy t u z e t u

k lt u
k l HB

t u t u
e e B y z

e k l



 


++ + − − +

++

+ 
 

− 
  

Again replacing   by x  in the last equation, and using (33), we get 

( ) ( ) ( )
( ) ( )2

1

, =0

; , =
! ! 1

k l t uy t u z ex t u

k l t u
k l HB

t u t u
e B x y z e

k l e




 ++ + −− +

+ +

+ 
 

− 
  

By the last two equations, we obtain 

( ) ( ) ( )( ) ( ) ( )
, =0 , =0

 ; , =  ; , ,
! ! ! !

k l k l
x t u

HB k l HB k l

k l k l

t u t u
B x y z e B y z

k l k l
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

 
− +

+ +   

which implies the asserted result (34).  

Theorem 10  The following symmetric identity holds for ,a b  and 0:n   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
=0 =0

 ; ,  ; , =  ; ,  ; ,
n n

n k k k n k

HB n k HB k HB k HB n k

k k

n n
B bx y z B ax y z a b B bx y z B ax y z a b

k k

   − −

− −

   
   
   

   

Theorem 11  Let ,a b  and 0n  . Then the following identity holds: 
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( ) ( ) ( )
1 1

1 2

=0 =0 =0
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k n k
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( ) ( ) ( )
1 1

2 1

=0 =0 =0
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n a b

k n k
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k i j HBHB
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Theorem 12 The following symmetric identity 

( ) ( ) ( ) ( ) ( )1 1

1 2

=0 =0

1 ; ; ,
n l

n k l l k

n l k l kHB HB
l k

n l
S b B bx y B ax y z a b
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−  
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( ) ( ) ( ) ( ) ( )1 1

2 1

=0 =0

= 1 ; ; ,
n l

n k l l k

n l k l kHB HB
l k

n l
S a B ax y B bx y z b a

l k

  + + + − −

− −

  
−  

  
   

holds for ,a b  and 0n  .  
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Abstract 

This work provides a new evolutionary approach based on a modified Genetic Algorithm to produce the 

advection diffusion responses of natural processes encountered in various branches of science. Since 

evolutionary processes; crossover, mutation and selection, yield the fittest survival in nature, the 

algorithm mimics the same procedures to find the optimum candidate solution of an advection-diffusion 

model. The proposed method is seen to be a very effective for the model by giving the consistent error 

intervals.  Besides, three cases of the advection diffusion equation with different Peclet number values 

are examined and the results are compared with the exact solution of the model equation to show how 

the algorithm is reliable in terms of challenging cases of the processes in nature. 

 

Keywords: Genetic Algorithm, Advection Diffusion Equation 

 

1. Introduction 

During the last decades, there is a growing interest on evolutionary algorithms (EA), which is inspired 

from evolutionary processes in nature. Genetic Algorithm (GA), one of evolutionary computing 

methods, have recently been used to solve optimization problems, since they have been found practical 

to be applied for numerous type of problems and can be get close to optimal solutions in considerably 

short time. 

The fundamental idea behind EA's is first introduced by Holland (1962) who tried to understand the 

principles underlying natural adaptive systems. With the guidance of his writings on Adaptive Systems 

Theory, the progress of evolutionary models and the use of geneticlike operators for optimization 

problems have been proceeded since 1960s. First usage of the term “Genetic Algorithm” and first 

publishment on the application of the method belongs to Bagley (1967). While his colleagues Cavicchio 

(1970) and Hollstien (1971) had been performed experimental studies, Holland developed his Schema 

Theorem which provides a macroscopic model testing the effectiveness of the algorithm and explains 

why GA effectively works. Holland (1975) then put all his works together on his novel book “Adaptation 

in Natural and Artificial Systems” which gives him the name “Father of Genetic Algorithm” and this 

book had been accepted the first published guidance in the heuristic algorithm world. By the 

improvement of computational resources and advanced programming languages in 1980s, a great 

number of iterations could have been used in calculations for more larger population. This had been 

accepted the key feature leading the advancement of the method and the utility of  evolutionary methods 

for a solution to differential equations.  

First use of EAs for ordinary differential equations has been carried out by the study of Koza (1992) and 

Diver (1993) by cobsiderable proper results. Also in later years an improved RNA GA (Xin et al, 2017) 

and Taylor Series assisted GA (Gutierrez et al, 2018) have been presented for solutions of ODEs. Heat 

transfer problems has became the next field on which GA has began to be used regularly in 1990s. 

 
*sarim@yildiz.edu.tr 
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Davalos et al (1996,1998) have been used the methodology for through the solution of one and two 

dimensional transient conduction problems. Later in 2000s higher performance of computational 

environment and accumulated theoretical knowledge have led to a dramatical growth in GA studies for 

solving partial differential equations. Recently, the algorithm has been advanced in terms of both 

diversity and complexity of the method by the variety of genetic operators and fine-tuned meshes.  

The usage of genetic algorithm as an alternative approach for solving partial differential equations has 

been got attention with various studies. Poisson Equation (Jebari, 2013); Schrödinger Equation (Saha et 

al, 2001), (Sugawara, 2001); inverse-heat problems (Karr et al, 2000), (Liu et al, 2008), (Raudensky et 

al, 1995); and heat-conduction problems (Kadri et al, 2014), (Tsourkas et al, 2003, 2005) have been 

accepted the main studies which uses GA on heat transfer problems. Various structures of GA have been 

used for heat transfer equations involving only conduction processes. Study of Xiaohua et al (2008) is 

the only publication that presents GA approach for both convection and diffusion processes. They have 

been proposed chaos-gray coded GA for pollution source identification in Convection Diffusion 

Equation which has the same mathematical structure with Advection Diffusion Equation (ADE).  

Within this study, an improved GA has been constructed to obtain the advection diffusion responses of 

natural processes. This version of GA differs from the classical one in terms of the representation of the 

candidate solutions, breeding and selection techniques. The model equation is given and the applied 

algorithm has been discussed in the following sections.  

 

2. Problem Definition 

Consider one dimensional homogenous advection-diffusion initial boundary value problem with the 

following initial and boundary conditions; 

 
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+ 𝑣 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
= 𝐷

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
  𝑥 𝜖 Ω𝑥 = [0, 𝑙] , 𝑡 𝜖 Ω𝑡 = [0,∞]                                                   (1) 

with initial and boundary conditions 

𝑢 = 𝑓(𝑥) 

𝑢(0, 𝑡) = 𝑔1(𝑡) 

𝑢(𝑙, 𝑡) = 𝑔2(𝑡) 

where 𝑢 is the concentration, 𝑣 is the flow velocity and  𝐷 the diffusivity constant. This equation 

describes one dimensional transport of a point mass through both advection and diffusion processes, 

without any source and sink terms. Mass is both transported and spread and the concentration depends 

on the quantity of advection and diffusion terms. If advection term is significantly higher than the 

diffusion term, then advection dominates and diffusion is negligible. The center of mass is transported 

in one way with negligible dispersion. If diffusion dominates and advection is negligible, it means that 

mass spreads almost symmetrically till homogeneity. Finally, if advection and diffusion terms are not 

significantly different, the transportation of the mass occurs for both in other words the concentration of 

the mass moves and spreads by the time. The relative behavior of advection versus diffusion is 

represented by Peclet number which has the following formulation for the given variables; 

 

𝑃𝑒 =
𝑣 𝑙

𝐷
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For observing the real-life situations to presented model equation, three cases with different Peclet 

numbers has been examined by the current method. Table 1 shows the selected parameters for Peclet 

numbers as follows;  

 Table 1 Test Cases with characteristic length of l=8 

 v (velocity) D (diffusivity) Peclet Number 

Case 1 1 0,005 1600 

Case 2 1 1 8 

Case 3 0.005 1 0.04 

 

3. Genetic Algorithm 

Genetic Algorithm is a global search algorithm based on random exploration of the solution space. 

Compared to conventional methods, GA enables to explore wider range of possible solutions. Among 

some number of initial candidate solutions, the algorithm attempts to find the optimal solution by a 

process similar to natural selection. Genetic Algorithm has been considered as Heuristic Search method 

which is an approach for problem solving that proposes a practical method which does not guarantee 

the perfect solution, but sufficient for reaching a short-term goal or approximation. So, GA searches for 

the best among the limited number of solutions and does not guarantee the best solution, but the optimal 

solution 

The structure of Genetic Algorithms is borrowed from natural processes, so inspired from the idea of 

evolution the algorithm contains five stages; representation of initial population, fitness assessment, 

selection, crossover and mutation as can be seen the following flowchart of the algorithm. 

 
 

3.1. Initialization of Population 

The algorithm starts with a set of initial guess for solution which is generated randomly from the 

beginning. Each candidate solution is called ‘individual’ or ‘chromosome’. The choice of the appropriate 

representation for individuals is important and must be problem-specific. In literature, binary or real-

valued representation of the candidate solution have been used for differential equations depending on 

design of the fitness function. Classical GA binary-coding are preferred in general. But since discrete 

numeric values are directly used to assess fitness, candidate solutions have been preferred to be real-

valued arrays instead of commonly used binary strings. Solution to one dimensional ADE is a surface 

with two independent variables, so the candidate solutions have been represented by two-dimensional 

arrays. The matrix  𝐴(𝑘) ∊  ℝ𝑚𝑥𝑛 refers to 𝑘 th candidate solution, where m and n are the chromosome 

sizes in space and time, respectively. 
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Size of the initial population is another parameter of the algorithm. Larger population size has expected 

to be useful for sharing the desired genetic information, since GA assumes that individuals carries some 

useful information, and with breeding process it will be transferred to next generation. So it was 

preferred to examine the effect of the initial population size with four different values. 

 

3.2. Fitness Assessment  

GA is a self-adapting method, so it proceeds by learning from previous knowledge, the performance of 

the former generation. To assess the performance, fitness function measures how well a candidate 

solution fits the desired solution and the design of it must be appropriate to structure of the problem. For 

ADE, fitness function was calculated directly by the equation itself. Time and space derivatives were 

discretized by central finite difference approximations and quadratic extrapolant formulas were applied 

at boundaries; 

 

𝑢𝑡(𝑥𝑖 , 𝑡𝑗) ≈
−3𝑢𝑖

𝑗
+ 4𝑢𝑖

𝑗+1
− 𝑢𝑖

𝑗+2

2∆𝑡
      𝑢𝑥(𝑥𝑖 , 𝑡𝑗) ≈

−3𝑢𝑖
𝑗
+ 4𝑢𝑖+1

𝑗
− 𝑢𝑖+2

𝑗

2∆𝑥
        

𝑢𝑥𝑥(𝑥𝑖 , 𝑡𝑗) ≈
𝑢𝑖

𝑗
− 2𝑢𝑖+1

𝑗
+ 𝑢𝑖+2

𝑗

∆𝑥2
 

 

Fitness of each chromosome were calculated by substituting derivatives by finite difference 

approximations through ADE and the result were expected to be close to zero as candidate solution gets 

close to exact solution. The smaller fitness result means the better fit to the solution and smaller error. 

Hence, the fitness values were considered as errors and overall errors were calculated as follows; 

 

𝐹(𝑖, 𝑗)(𝑘) =
𝑢𝑖

𝑗+1
− 𝑢𝑖

𝑗−1

2∆𝑡
+ 𝑣

𝑢𝑖+1
𝑗

− 𝑢𝑖−1
𝑗

2∆𝑥
− 𝐷

𝑢𝑖
𝑗+1

− 2𝑢𝑖
𝑗
+ 𝑢𝑖

𝑗−1

∆𝑡2
  → 0 

𝐹𝑡𝑜𝑡𝑎𝑙
(𝑘) =

1

𝑁𝑥𝑁𝑡
∑∑(𝐹(𝑖, 𝑗) − 𝐹𝑎𝑣𝑔

(𝑘))2

𝑁𝑡

𝑗=1

𝑁𝑥

𝑖=1

 

 

where 𝐹(𝑖, 𝑗)(𝑘) is the error of one component of 𝑘 th chromosome and 𝐹𝑎𝑣𝑔
(𝑘) is the average error of 

the 𝑘 th chromosome. The choice of variance as total error measurement is because of determination 

and elimination of individuals with excessive errors of genes which increases the variance. Chromosome 

with outlier genes are intended to be eliminated to speed up the convergence with this choice.  

 

3.3. Selection 

Survival of the fittest individuals are maintained through selection step of the algorithm. Once the 

population has been evaluated, 𝑝 number of individuals which have the smallest errors, have been 

selected to be parents of the next generation with probability of 𝑝/2 are moms and 𝑝/2 are dads. At the 

next stage, they were chosen randomly from mating pool and mated to produce new offsprings.  

 

3.4. Crossover 

Genetic information of one generation to the next one is transferred through crossover operator. As 

Holland (1975) states, the effectiveness of GA is highly determined by crossover. Two parents have 

been selected from the mating pool randomly. Recombination of the sections of parents have assembled 

to each other and two new members of population have been obtained.   

In our study cross-over operator differs from simple GA in two ways; 
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• Horizontal and vertical crossovers; For one-dimensional arrays, crossover is performed by swapping 

parts of two parental chromosomes and two new individuals are created. Two-dimensional 

chromosome operator is improved in such a way that both horizontal and vertical crossovers are 

applied. So number of offsprings from one couple is increased with two types of crossovers which is 

expected to promote diversity of the population. Consider 𝐴𝑚𝑥𝑛 and 𝐵𝑚𝑥𝑛 as parent individuals, then 

the surface chromosomes of parents are cut vertically at the 𝑖 th point. Thus, vertical offsprings 𝑣1 

and 𝑣2 are generated as follows. Horizontal crossover results in two new individuals in a similar way. 

 

  𝐴 =  

[
 
 
 
𝐴1,1

𝐴2,1

⋮
𝐴𝑚,1

…

𝐴1,𝑖

𝐴2,𝑖

⋮
𝐴𝑚,𝑖

𝐴1,𝑖+1

𝐴2,𝑖+1

⋮
𝐴𝑚,𝑖+1

…

𝐴1,𝑛

𝐴2,𝑛

⋮
𝐴𝑚,𝑛]

 
 
 
,     𝐵 = [

𝐵1,1

𝐵2,1

⋮
𝐵𝑚,1

…

𝐵1,𝑖

𝐵2,𝑖

⋮
𝐵𝑚,𝑖

𝐵1,𝑖+1

𝐵2,𝑖+1

⋮
𝐵𝑚,𝑖+1

…

𝐵1,𝑛

𝐵2,𝑛

⋮
𝐵𝑚,𝑛

]      

 

  𝑣1 =

[
 
 
 
𝐴1,1

𝐴2,1

⋮
𝐴𝑚,1

…

𝐴1,𝑖

𝐴2,𝑖

⋮
𝐴𝑚,𝑖

𝐵1,𝑖+1

𝐵2,𝑖+1

⋮
𝐵𝑚,𝑖+1

…

𝐵1,𝑛

𝐵2,𝑛

⋮
𝐵𝑚,𝑛]

 
 
 
,   𝑣2 = 

[
 
 
 
𝐵1,1

𝐵2,1

⋮
𝐵𝑚,1

…

𝐵1,𝑖

𝐵2,𝑖

⋮
𝐵𝑚,𝑖

𝐴1,𝑖+1

𝐴2,𝑖+1

⋮
𝐴𝑚,𝑖+1

…

𝐴1,𝑛

𝐴2,𝑛

⋮
𝐴𝑚,𝑛]

 
 
 
 

           

• n-point crossover; Conventional genetic algorithms select the crossover point randomly among (𝑚 −

1) and (𝑛 − 1) alternatives. Probably, the selection of one crossover point may eliminate better 

combinations of the sections. So, the idea of including all possible offsprings with all possible 

crossovers to the population, is expected to contribute the diversity. With n-point crossover, 

population becomes huge-sized, and the bests are selected among them at each generation. By means 

of these modifications of the simple genetic algorithm, solution space is expected to be represented 

better.  

 

3.5. Mutation 

During the iteration process, the difference among individuals has been expected to decrease with the 

elimination of the outliers. Avoiding the convergence to non-optimal solutions, specified percentage of 

the genes, which was defined as mutation rate, are modified randomly to keep searching the 

neighborhood of the solution. This may help the algorithm to catch the optimal solution. Over-mutation 

may cause the candidate solution to get away from optimal. So, mutation rate was kept in the interval 

[0.01 − 0.05] in literature. It was determined as 5% in this study.  

 

4. Results and Discussion 

In this section, the proposed method has been applied for three different cases of one dimensional 

homogenous advection-diffusion initial boundary value problem with Dirichlet boundary conditions. 

The results from cases has been evaluated in terms of optimal chromosome sizes with low error terms. 

Besides, as a contribution to improved crossover operator, n-point crossover has been compared with 

one-point crossover for each cases. 

Furthermore, since Genetic Algorithm has been claimed to be an alternative to numerical methods in 

terms of ease of implementation, application and low computational cost, running time will be given for 

comparison purpuses. All experiments are performed with MATLAB on a personal computer with 

Intel(R) Core (TM) i5-8250U 1.60GHz - 1.80 GHz CPU and 8.00 GB RAM. Initial population size has 

been determined as p=1000 and number of generations as N=100. The error of cases of the equation are 

shown with following Figures and Tables: 
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Figure 1 Comparison of GA results with the exact solution for Case 1 when number of iteration (N) is 

100, initial population size (p) is 1000, with chromosome sizes of [19,11] 

 
Figure 2 Comparison of GA results with the exact solution for Case 2 when number of iteration (N) is 

100, initial population size (p) is 1000, with chromosome sizes of [19,11] 

 
Figure 3 Comparison of GA results with the exact solution for Case 3 when number of iteration (N) is 

100, initial population size (p) is 1000, with chromosome sizes of [19,11] 
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Figure 4 Comparison of GA results with the exact solution at first three time steps [0.3s, 0.6s, 0.9s] 

where continuous lines represents exact solution and the dotted lines represents GA solution. 

As can be seen in pair of graphs, comperatively, the behaviour of the solution has seen to be very similar 

with the exact solution in all three test cases. In advection dominated case 1 with the Peclet number 

1600, the algorithm has seen to perform error less than 10−2 compared to the others. While case 2 has 

a considerable error of 10−3, the diffusion dominated case 3, with Peclet number 0.04, has a significant 

convergence to capture the exact solution with error of 10−4. So GA has accomplished to converge to 

the solution even with small set of generations as can be observed numerically from the following table. 

 

Table 2 Total errors of optimal solutions with comparison of n-point and 1-point crossover operator 

where N represents number of generation and p is the initial population size. 

 

Experiments have been performed with various number of generations, initial population size and Peclet 

numbers. To show the decreasing pattern which has been observed through the results, parameters have 

randomly selected. It can be argued that the performance of the algorithm is likely to increase for  smaller 

Peclet numbers. Furthermore, error decreases with increased number of generations and larger initial 

population sizes which is expected to contribute to diversity. Furthermore, crossover operator has been 

developed with n-point crossover. Comparing the results with the one-point crossover errors, n-point 

operator almost halves the error values. 

Sizes of the parameters affects the running time of algorithm which is approximately 30 minutes with 

initial population of size 1000 and 150 generations, for all three cases. Considerable convergence could 

be obtained even with small sizes of generations and candidate solutions and low computational cost 

whose the performance criteria for numerical methods. This is the main advantage for Genetic 

Algorithm compared to numerical methods for practical usage for engineering problems.  

However, chromosome size in both dimensions plays a critical role in terms of both accuracy and the 

performance of the method. During experimental studies, it has seen that average error increases 

chomosome sizes greater than twenty and surface of the solution damages with outliers. Even though 

the step sizes are needed to be minimized for accuracy in numerical methods, the current method have 

 

 

 Case 1, Pe=1600 Case 2, with Pe=8 Case 3, Pe=0,04 

p=100 p=500 p=1000 p=100 p=500 p=1000 p=100 p=500 p=1000 

N=50 
n-point 0.0875 0.0532 0.0510 0.0173 0.0101 0.0099 0.0128 0.0019 4.52e-04 

1-point 0.1104 0.1049 0.0935 0.0263 0.0219 0.0168 0.0174 0.0066 1.19e-03 

N=100 
n-point 0.0870 0.0503 0.0497 0.0161 0.0094 0.0062 0.0066 0.0017 3.31e-04 

1-point 0.1090 0.1042 0.0921 0.0242 0.0212 0.0123 0.0141 0.0043 6.19e-04 

N=150 
n-point 0.0852 0.0499 0.0432 0.0158 0.0092 0.0061 0.0048 0.0016 3.02e-04 

1-point 0.1035 0.1021 0.0893 0.0240 0.0205 0.0098 0.0131 0.0038 4.85e-04 
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a tendency of giving accurate results for different step sizes. Therefore, the presented work has been 

seen the reliable approach without decreasing step sizes. 

 

5. Conclusion and Recommendations 

In this study, a modified genetic algorithm has been explored for solving one dimensional ADE. To 

observe the consistency of the algortihm with nature,  three different cases have been created by different 

Peclet numbers representing relative behavior of advection and diffusion in the real model. These three 

cases have been presented in a comparative way by discussing the parameters of the algorithm. The fast 

convergence to near-optimal solutions with very low computational costs had been observed for the real 

model. Moreover, the flexible implementation of the algorithm which are not restricted with structural 

limitations has seen to be practical to be implemented for more complex problems. Even though the 

considered example of ADE is seem to be very basic, it can be definetely concluded that the algorithm 

can be easily applied for models including nonlinearities, source terms or additional dimensions in 

nature. 
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Abstract 

Antenna is a metallic device which is used for transmitting and receiving an electromagnetic signal. 

Yagi-Uda antennas are known to be difficult to design and optimize due to their sensitivity at high gain, 

and the inclusion of numerous parasitic elements. Still, this antenna is familiar as the commonest kind 

of terrestrial TV antenna to be found on the rooftops of houses and have a wide application in other 

communication industries. It can be used at frequencies between about 30 MHz and 3 GHz. This paper 

presents simulated results of a UHF band Yagi-Uda antenna designed to operate in the UHF TV band 

ranging from 470 MHz to 890 MHz, using YO 6.5 Yagi Optimizer software. The designed antenna 

radiates an end-fire fan beam pattern with bandwidth of about 57% for voltage standing wave ratio 

(VSWR) less than 2. The simulated result shows that the antenna exhibits good bandwidth and moderate 

gain properties with good impedance characteristics.  

 

Keywords: Yagi Uda antenna, simulation, VSWR, Gain,  

 

1. Introduction 

A Yagi-Uda Antenna, commonly known simply as a Yagi antenna or Yagi, is a directional antenna 

system consisting of an array of dipole and additional closely coupled parasitic elements (Balanis, 2016).  

Yagi-Uda Antenna is a widely used antenna design due to its high forward gain capability, low cost and 

ease to construction (Luo et al., 2015). 

The main reason antenna engineering is such an extensive field is due to television. It is seemed that TV 

receiving antennas go from the once standard ‘rabbit ears’, through to the much larger roof mounted 

VHF antennas to the smaller UHF antennas, and now with the advent of pay TV channels in most parts 

of the world, companies utilize microwaves for television broadcasting (Fezai et al., 2013), (Gutierrez, 

2017), (Vadivel et al., 2018), (singh et al, 2015), (Kanzaria et al., 2015), (Prasad et al., 2014).. 

The UHF television band range from 470MHz to 890MHz and the most stringent requirement for TV 

broadcast antennas is that the voltage standing-wave ratio should be less than 1:1:1 over the band. There 

are also other several requirements a TV receiving antenna must meet; it must have sufficient gain and 

good impedance match in order to produce a signal of enough strength for a clear picture. It must also 

be able to reject reflected and unwanted signals arriving from different directions (Balanis, 2016). Losses 

due to reflected and therefore out of phase signals can be greatly reduced by using highly directive 

antennas. 

The particular antenna studied in this paper is the Yagi-Uda, first proposed in 1926 (Uda et al, 1954). 

This was antenna was chosen because it presents difficult design and optimization challenges, and is 
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widely used antenna design due to its high capability, low cost and ease of construction. The Yagi-Uda 

is an end-fire array consisting typically of a single driven dipole with the reflector dipole behind the 

driven element (driven from its centre), and one or more parasitic director elements as shown in Figure 

1. The highest gain can be achieved along the axis and on the side with the directors. The reflector 

element reflects power forwards and thus acts like a small ground plane. The design parameters consist 

of element lengths, inter-element spacing, and element diameter.  

 
 

Figure 1. Antenna Components  

 

The Yagi-Uda array antenna has the important practical advantage that a complex feed network is not 

required, only a single element is directly fed. In addition, the elements may be as simple as wires, rods 

or thin metallic tubes. So the Yagi-Uda array is popularly used in the application for radio beacons, radio 

links, and early radar systems in United States and Europe. It is ironical history in 1942, when the 

Japanese army invaded Singapore, they discovered that the Yagi-Uda array was being used as a radair 

antenna by the British army. 

 

VSWR represents the degree with which an antenna is matched to the system impedance. It is the ratio 

between the highest voltage and the lowest voltage in the single envelope along a transmission line (Wu 

et al., 2013). The VSWR was desired to be less than 2 bandwidth and gain and impedance characteristic 

were to be maximized.  

2. Yagi antenna design 

There are formulas that we had used to decide both the length of the pieces and the spacing between 

them. The dimension of the elements is frequency-dependant. Usually a reflector is cut longer than the 

driver (< 0.5λ) and a director(0.5λ) is cut shorter than the driver, so that the main beam is enhanced in 

the same direction by both the reflector and director (Murali et al., 2014), (Perry et al., 2001). The dipole 

will be directly driven from a feed network, whereas the parasitic elements achieve excitation by the 

near field coupling from the driven element. 

Figure 2 depicts a clear form of the Yagi-Uda antenna. The centre rod like structure on which the 

elements are mounted is called as boom. The element to which a thick black head is connected is the 

driven element to which the transmission line is connected internally, through that black stud. The single 

element present at the back of the driven element is the reflector, which reflects all the energy towards 

the direction of the radiation pattern. The other elements, before the driven element, are the directors, 

which direct the beam towards the desired angle. 
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Figure 2. Yagi Uda Antenna 

The antenna can be designed from Figure 3 using the following design specifications as shown in 

Table 1. 

 

 

 

 

 

Figure 3. Antenna Specification 

Table 1. Designing of Yagi-Uda antenna. 

ELEMENT SPECIFICATION 

Length of the Driven Element 0.458λ to 0.5λ 

Length of the Reflector 0.55λ to 0.58λ 

Length of the Director 1 0.45λ 

Length of the Director 2 0.40λ 

Length of the Director 3 0.35λ 

Spacing between Directors 0.2λ 

Reflector to dipole spacing 0.35λ 

Dipole to Director spacing 0.125λ 

 

In a 6-element Yagi for UHF band TV antenna is designed using 10mm diameter untapered aluminium 

tubes insulated from metallic boom. The boom length and diameter are 0.86λ and 10mm respectively. 

Polyester is used as an insulating material. The designed antenna has vertical and horizontal polarization. 

Connector used would be N-female (it can also be TNV or BNC) since these types of connectors 

maintain good VSWR at high frequency as referred in Table 1: Designing UHF band Yagi-Uda TV 

antenna. 
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The maximum gain can be attained along the axis and on the side with the directors. The function of the 

reflector is to reflect power forwards and therefore it acts like a small ground plane. The spacing between 

each element is not identical and it can be considered as a non-linear array. The number of directors in 

the antenna depends on the gain requirements (Dubey et al., 2014). The flow of current on the active 

element of the yagi-uda antenna is determined by its length, frequency and coupling with nearby 

elements, while the current distribution in passive elements is governed by the boundary condition.  

3. Simulation Results and Discussion 

The analysis and design procedure is based on the full-wave electromagnetic solver based on YO 6.5 

Yagi optimizer. Though the designed antennas performance on the actual operation was not checked but 

we suppose an almost similar result, as the simulation will come out when it is actually made. The reason 

being, several simulations programmes have been run and nearly same result was obtained from them. 

The simulated results for gain, front-back ratio, VSWR and input impedance against frequency are 

shown in Figure 4. 

 

Figure 4. VSWR and Input Impedance against Frequency 

From Figure 4 we notice the antenna provides a bandwidth of about 57% (450-840MHz) for VSWR < 

2, gain of 3.6 dBi at centre frequency, and good impedance characteristic, as it is maintained between 

40-70Ω over wide bandwidth. The antenna’s matching frequency (669.68MHz) often changes 

depending on the environment where the antenna is mounted. It can either shift above or below the 

initial frequency but since the VSWR <2 is maintained for wide-bandwidth, this problem will be 

eliminated. 
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Figure 5a: Far Field radiation pattern in the E- plane 

 

 

 

 

 

 

 

 

 

 

 

Figure 5b: Far Field radiation pattern in the H- plane 

Figure 5a and 5b shows the calculated far field radiation pattern in the E and H-plane. The radiation 

pattern indicates a well-defined end fire with front to back ratio of more than 7dB. The simulated results 

of the antenna radiation pattern showed that the radiation pattern is fairly stable over the operating band.   

 

4. Conclusion 

A UHF band Yagi – Uda TV antenna was successfully demonstrated using Yo 6.5 Yagi Optimizer 

simulation. The antenna provides a bandwidth of about 57% for VSWR <2. The input impendence of 

50Ω is maintained. The antenna designed had a gain of 3dBi at the center frequency. The proposed 
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antenna has a simple structure and is easy to construct. It provides an operating at the frequency range 

of 450 MHz - 890 MHz, centered at 680 MHz with a peak antenna gain of 3.61 dBi. Investigation on 

the location of the E and H-plane phase center over the entire antenna surface as opposed to only along 

its axis may also be conducted. Suitable techniques to reduce the cross polarization levels of these 

antennas may also be suggested 
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Abstract 

In this paper, we introduce both the generalized degenerate Gould-Hopper based degenerate Stirling 

polynomials of the second kind and the generalized degenerate Gould-Hopper based fully degenerate 

Bell polynomials. We study and investigate multifarious properties and relations of these polynomials 

such as explicit formulae, differentiation rules and summation formulas. Moreover, we derive several 

correlations with the degenerate Bernstein polynomials for these polynomials. Furthermore, we acquire 

several representations of the generalized degenerate Gould-Hopper based fully degenerate Bell 

polynomials via not only the fully degenerate Bell polynomials but also the generalized degenerate 

Gould-Hopper based degenerate Bernoulli, Euler and Genocchi polynomials. 

 

Keywords: Poisson-Charlier polynomials, degenerate exponential function, special polynomials 

 

1. Introduction 

For   , the  -falling factorial ( )
,n

x


 is defined by (Appell et al., 1926, Carlitz et al., 1975, Carlitz 

et al., 1956, Cheikh et al., 2003, Dattoli et al., 1999, Duran et al., 2021, Duran et al., 2018, Duran et al., 

2019, Duran et al., 2020, Howard, 1996, Howard, 1979, Khan et al., 2016, Kim et al., 2018, Kim et al., 

2018, Kim et al., 2019, Kim et al., 2017, Lim et al., 2016, Njionou, 2020, Khan et al., 2018):  

( )
,

( )( 2 ) ( ( 1) ), =1,2,
=

1 = 0.n

x x x x n n
x

n

  − − − −



 (1.1) 

In the case =1 , the  -falling factorial reduces to the familiar falling factorial ( )
n

x  (Appell et al., 

1926, Carlitz et al., 1975, Carlitz et al., 1956, Cheikh et al., 2003, Dattoli et al., 1999, Duran et al., 2021, 

Duran et al., 2018, Duran et al., 2019, Duran et al., 2020, Howard, 1996, Howard, 1979, Khan et al., 

2016, Kim et al., 2018, Kim et al., 2018, Kim et al., 2019, Kim et al., 2017, Lim et al., 2016, Njionou et 

al., 2020, Khan et al., 2018, Rainville, 1960, Srivastava et al., 2012) 

( ) = ( 1) ( 1).
n

x x x x n− − +  

The Stirling numbers of the first kind ( )1 ,S n m  are defined by means of the falling factorial as follows 

( ) ( )1

=0

= , ,
n

m

n
m

x S n m x   (1.2) 

cf. (Carlitz et al., 1975, Duran et al., 2020, Rainville, 1960, Srivastava et al., 2012) and see also 

references cited therein. 

The   difference operator is defined by (see Dattoli et al., 1999, Duran et al., 2019, Duran et al., 2020, 

Njionou, 2020) 
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1
( ) = ( ( ) ( )), 0.f x f x f x  


 + −    (1.3) 

The following Lemma will be useful in the derivation of several results. 

 

Lemma 1 The following elementary series manipulation hold: 

/

=0 =0 =0 =0

( , ) = ( , ),
n j

n k n k

A k n A k n jk
   

−    (1.4) 

where     is the Gauss notation, and represents the maximum integer which does not exceed the number 

in the square brackets.  

The degenerate exponential function ( )xe t  for a real number   is given by (Duran et al., 2021, Kim 

et al., 2017, Lim, 2016) 

( ) ( ) ( ) ( )1= 1 and = .
x

xe t t e t e t
  +   (1.5) 

It is readily seen that ( )0 =lim
x xte t e → . From (1.1) and (1.5), we obtain the following relation  

( ) ( )
,

=0

= ,
!

n
x

n
n

t
e t x

n
 



   (1.6) 

which satisfies the following difference rule 

( ) ( )= .x xe t te t     (1.7) 

The usual Bell polynomials and Stirling numbers of the second kind satisfy the following relation (Bell, 

1934, Bouroubi et al., 2006, Carlitz, 1980, Kim et al., 2017) 

( ) ( )2

=0

= , .
n

m

n

m

B x S n m x   (1.8) 

The degenerate Bell polynomials are given by the following Taylor series expansion at = 0t  as follows: 

( )
( )( )1

,

=0

= .
!

n
x e t

n

n

t
B x e

n





−

   (1.9) 

The usual Bernoulli ( )nB x , Euler ( )nE x  and Genocchi ( )nG x  polynomials and the degenerate 

Bernoulli ( ),nB x , Euler ( ),nE x  and Genocchi ( ),nG x  polynomials are given as follows (Araci et 

al., 2016, Duran et al., 2018, Howard, 1979, Khan, 2016, Kurt et al., 2013, Mihoubi, 2008, Pathan, 2012, 

Ozarslan, 2013): 

( ) ( )
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=0 =0
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The Gould-Hopper polynomials are defined via the following Mac Laurin series expansion (Appell, 

1926): 

( ) ( )
=0

, = ,
!

n
jj xt yt

n

n

t
H x y e

n


+   (1.10) 
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where j   with 2j  . Upon setting =1j , the Gould-Hopper polynomials reduce to the 

representation of the Newton binomial formula. Also, choosing = 2j  in (1.10), we obtain the familiar 

Hermite polynomials denoted by ( ),nH x y . 

Let ,n j   with 0n  and > 0j , and let  1 2, \ 0   . The generalized degenerate Gould-

Hopper polynomials 
( ) ( ), ,

1 2
,

j

nH x y   are defined by means of the following generating function (Duran 

et al., 2020): 

( ) ( ) ( ) ( ), ,
1 2 1 2

=0

, = .
!

n
j x y j

n

n

t
H x y e t e t

n
   



   (1.11) 

Diverse formulas and properties of the generalized degenerate Gould-Hopper polynomials 

( ) ( ), ,
2 3

,
j

nH x y   are investigated by Duran and Acikgoz in (Duran et al., 2020). 

 

2  The Generalized Degenerate Gould-Hopper Based Degenerate Poisson-Charlier 

Polynomials 

The Poisson-Charlier polynomials ( );nc z  , which are members of the family of Sheffer-type 

sequences, are defined explicitly by (Bouroubi et al., 2006, Cheikh et al., 2003, Dattoli et al., 1999) 

( ) ( )
=0

; = 1 ! .
n

k k

n

k

n
c z k z

k k


 −  

−   
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  

The generating function for the Poisson-Charlier polynomials are given as follows (cf. Kim et al., 2015): 

( )
=0

; = 1 .
!

zn
t

n

n

t t
c z e

n





− 

+ 
 

   (2.1) 

Several properties and relations for the Poisson-Charlier polynomials have been studied and investigated 

by many mathematicians (Bouroubi et al., 2006, Cheikh et al., 2003, Dattoli et al., 1999) and also cited 

references therein. 

Definition 2 Let  1 2, \ 0   . The generalized degenerate Gould-Hopper based degenerate 

Poisson-Charlier polynomials 
  ( ), ,

1 2
; , ,

j

nc z x y    are defined by the following exponential generating 

function 

  ( ) ( ) ( ), ,
1 2 1 2
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j x y j
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t t
c z x y e t e t
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


 
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   (2.2) 

Remark 1   

1.  When = 0x , the polynomials 
  ( ), ,

1 2
; , ,

j

nc z x y    in (2.2) reduce to the generalized Gould-Hopper 

based degenerate Poisson-Charlier polynomials in (2.3), which are also new generalizations of the 

Poisson-Charlier polynomials ( );nc z   in (2.1), given by 

( ) ( ),
2 2

=0

; , = 1 .
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zn
y j

n

n

t t
c z x e t

n
 




 

+ 
 

   (2.3) 

2.  When = 0y , the polynomials 
  ( ), ,

1 2
; , ,

j

nc z x y    in (2.2) reduce to the generalized Gould-Hopper 

based degenerate Poisson-Charlier polynomials in (2.4), which are also new generalizations of the 

Poisson-Charlier polynomials ( );nc z   in (2.1), given by 
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  ( ) ( ),
1 1

=0

; , = 1 .
!

zn
j x

n

n

t t
c z y e t

n
 




 

+ 
 

   (2.4) 

3.  Upon setting 1 2, 0  → , we get the Gould-Hopper based generalized Poisson-Charlier polynomials 

  ( ), ,
1 2

; , ,
j

nc z x y    (2.5), which are extensions of the Poisson-Charlier polynomials (2.1), shown by 

  ( )   ( ), ,
1 2

=0

; , , ; , , = 1 .
!

zn
jj j t xt yt

n n

n

t t
c z x y c z x y e e

n
   




− + 

+ 
 

  (2.5) 

4.  Choosing = 1x −  and = 0,y  we get the usual degenerate Poisson-Charlier polynomials, which are 

also new generalizations of the Poisson-Charlier polynomials ( );nc z   in (2.1) given below: 

( ) ( )1

,
1 1

=0

; = 1 .
!

zn

n

n

t t
c z e t

n
 




− 

+ 
 

   (2.6) 

5.  When 1 0, →  = 1x −  and = 0y , we arrive at the usual Poisson-Charlier polynomials in (2.1).  

We now provide the following theorems without their proofs. 

Theorem 1 For  1 2 3, , \ 0 ,     we have 

  ( ) ( ) ( ) ( ), , , , ,
1 2 1 1 2

=0

; , , = ; 1, .
n

j j

n l n l

l

n
c z x y c z H x y

l
      −

 
+ 

 
  (2.7) 

 Theorem 2 The following summation formula is valid for  1 2, \ 0   : 

  ( )   ( ) ( ), , 1 2 , , 1 , 2
1 2 1 2 1

=0

; , , = ; , 1, ; ,
n

j j

n n m m

m

n
c z z x y c z x y c z

m
      −

 
+ + 

 
  (2.8) 

 Theorem 3 The following formula holds for  1 2, \ 0   : 

  ( )   ( ) ( ) ( ), , 1 2 1 2 , , 1 1 , , 2 2
1 2 1 2 1 2

=0

; , , = ; , , ,
n

j j j

n n m m

m

n
c z x x y y c z x y H x y

m
      −

 
+ +  

 
  (2.9) 

 Theorem 4 The following explicit formula holds for  1 2, \ 0   : 

  ( ) ( ) ( ) ( )
/

, , , ,1 2 1 2
=0 =0

!
; , , =

( )! !

u nu jn
j

n n u u jk k
u k

n u
c z x y z x y

u u jk k
   




− 

− −

 
 

− 
  (2.10) 

 Theorem 5 The following relation holds for  1 2, \ 0   : 

  ( )   ( )
( ) ( )

( )

1
1

, , , ,
1 2 1 2

=0

1 1 ! 1
; , , = ; , ,

n u
n

j j

n u

u

n n ud
c z x y n c z x y

udz n u
    

− −
− − − − − 

 
− 

  (2.11) 

  

Theorem 6 The following relation holds for  1 2, \ 0   : 

  ( )   ( )
( ) ( )

( )

1
1

1

, , , ,
1 2 1 2

=0

1 1 !
; , , = ; , ,

n u
n

j j

n u

u

n n ud
c z x y n c z x y

udx n u
   


 

− −
− − − − − 

 
− 

  (2.12) 

 

3  Multifarious Connected Formulas 

Here, we perform to get several diverse relations for 
  ( ), ,

1 2
; , ,

j

nc z x y    with some other degenerate 

polynomials including the generalized degenerate Gould-Hopper based degenerate Bernoulli, Genocchi 
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and Euler polynomials. 

 

Definition 3 (Duran et al., 2020) The generalized degenerate Gould-Hopper based degenerate 

Bernoulli 
  ( ), ; ,

1 2 3
,

j

nB x y   , Euler 
  ( ), ; ,

1 2 3
,

j

nE x y    and Genocchi 
  ( ), ; ,

1 2 3
,

j

nG x y    polynomials are 

defined by the following exponential generating functions: 

  ( )
( )

( ) ( ), ; ,
1 2 3 1 2

=0
3

, =
! 1

n
j x y j

n

n

t t
B x y e t e t

n e t
    





−
  (3.1) 

  ( )
( )

( ) ( ), ; ,
1 2 3 1 2

=0
3

2
, =

! 1

n
j x y j

n

n

t
E x y e t e t

n e t
    





+
  (3.2) 

  ( )
( )

( ) ( ), ; ,
1 2 3 1 2

=0
3

2
, =

! 1

n
j x y j

n

n

t t
G x y e t e t

n e t
    





+
  (3.3) 

for  1 2 3, , \ 0    .  

We here provide a relation involving the polynomials 
  ( ), ,

1 2
; , ,

j

nc z x y   , ( ), ,
1

:nB x    and 

  ( ), ; ,
1 2 3

,
j

nB x y    as follows. 

Theorem 7 The following correlation holds true: 

  ( ) ( )   ( )
( )

1,
3

, , , , , , ; ,
1 2 3 1 1 2 3

=0 =0

1
: , , = ; ,
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n u s s
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B z x y c z B x y

u s n u



        
− +

−

  
  

− +  
  (3.4) 

 Proof. By (2.2) and (3.1), we get 
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=0 =0 =0

1
= ; 1, ,

1 !
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n uj

u s s
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   

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−

    
 +   
 − +    

    

which implies the desired result (3.4).  

Theorem 8 The following summation formulais valid. 

  ( )
( )

( )   ( )
,

3
, , , , ; ,

1 2 1 1 2 3
=0 =0

1
; , , = ; 1,
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−
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( )   ( ), , ; ,
1 1 2 3
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1
; 1, .
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c z E x y

k
   −

 
+ + 

 
  (3.5) 

 Proof. From (2.2) and (3.2), the aimed result (3.5) can be directly obtained by utilizing similar method 

used in the proof of Theorem 7. Thus, we omit the proof.  

Theorem 9 The following relation holds true: 
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1 2

=0 =0
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1 1 2 3
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1 1 2 3
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Proof. In view of (2.2) and (3.3), can be directly attained by utilizing similar method used in the proof 
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of Theorem 7. Thus, we omit the proof.  
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Abstract 

Balancing the offshore structures in the ocean or sea against the forces created by seismic movements 

and waves is extremely important for the serviceability and the safety of the structure. In order to achieve 

this, various approaches are currently being considered (Kandasamy et al., 2016; Madkour et. al, 2007). 

Region-specific parameters should be recorded and used when needed to assist these approaches. In 

addition, the use of artificial intelligence methods, which have been in demand recently, to reduce the 

oscillation in buildings, allows more effective results in the application that can be done in this field 

(Kim, 2009). Using the long-short-time memory (LSTM) algorithm (Hochreiter et. al, 1997), one of the 

deep learning methods, time series prediction can be performed. As a result of the prediction, better 

approaches can be developed for the future. This study shows that the vibration control of offshore 

platforms can be achieved against various types of loadings by the deep learning techniques, which is a 

branch of artificial intelligence. For this purpose, a long pile is analyzed by solving the equation of 

motion under forcing described by the Morison equation (Morison et al., 1950; Dean et al., 2000). Thus, 

a realistic wave load is applied to analyze system behavior in a more realistic setting. The applied wave 

loads are predicted using the LSTM deep learning network and applied to the system as negative 

feedback. It is shown that a significant reduction in the vibration amplitudes can be achieved by this 

approach. Our findings and their possible applications are also discussed. 

 

Keywords: Vibration control, offshore structures, deep learning 

 

1. Introduction 

Controlling the vibrations that may occur in structures is extremely important both for the health of the 

structures and for the safety of the people. Reducing the vibration parameters such as displacements that 

may occur as a result of both the earthquake or sea waves, especially in offshore structures, is a situation 

that needs extra attention. Due to this fact, many studies have been carried out to reduce the vibration 

that may occur in offshore structures (Kandasamy et al., 2016; Madkour et al., 2007). However, 

approaches developed for vibration control seem to have some advantages and disadvantages 

(Kandasamy et al., 2016; Madkour et al., 2007). Therefore, it is crucial to choose the optimal approach 

that will suit the system, considering the characteristics and environmental conditions. Another point to 

be considered is that existing approaches can be improved due to the development of today's technology 

over time. Significantly, studies in artificial intelligence affect many points in human life as well as 

helping vibration control approaches (Hochreiter et al., 1997; Olah, 2015). Moreover, using artificial 

intelligence methods to reduce vibration has recently been one of the considered approaches (Kim, 2009; 

Madkour et al., 2007). In our study, we consider the vibration control of a pier pile using the feedback 

force forecasted by the LSTM deep learning network. The wave force on a pier pile can be calculated 

by the Morison equation (Morison et al., 1950; Dean et al., 2000). Using the 90% of the Morison force 
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time series that will be learned by the LSTM algorithm, the remaining 10% is forecasted. Then this 

forecasted force is feedback into the system whose dynamics are modeled using the equation of motion 

solved by an ode45 solver. It is shown that LSTM based deep learning approach can be used to control 

and reduce vibration parameters of a pier pile or in general any structure.  

 

2. Methodology 

2.1. Vibration Model of a Pier Pile with a Feedback Force Control 

In order to simulate the vibration dynamics of a pier pile, a simple vibration model is considered. The 

equation of motion can be given as  

( )mx cx kx F t+ + =                 (1) 

where x(t) denotes the displacement from the equilibrium position, m is the mass, c is the damping 

coefficient, k is the stiffness, and F(t) is the time-dependent force. Throughout this study, the 

computational parameters are selected as m=150kg, c=50Ns/m, k=2500 N/m. Eq. (1) is solved using 

ode45 solver of the MATLAB software starting from the initial conditions of 𝑥(0) = 0.5 𝑚 and �̇�(0) =

−0.2 𝑚/𝑠. The forcing term on the right hand side of Eq. (1) is calculated using the Morison formula. 

For this purpose, a circular cylinder which can be a model for a pile foundation is considered. For a pile 

of length dz, the Morison formula can be summarized as 

1
.

2
D I D M

Du
dF dF dF C u u C V

Dt
= + =  + 

                        (2) 

Here the subscripts D and I denote the drag and inertia forces, respectively.  CD denotes the drag 

coefficient and CM  shows the inertia coefficient. The parameter ρ is the fluid density and A shows the 

area perpendicular to the flow. The parameter V represents the volume of the element of height dz and 

u shows the horizontal flow excursion velocity of the wavefield (Dean et al., 2000). Total equivalent 

force can be computed after integration as 

.
h

F dF



−

=                                           (3) 

Here h is the depth and η is the water surface fluctuations. After the linearization of Eq. (3) for the case 

of a pile with diameter D, the force exerted by a monochromatic wave can be found as 

1 1 1cos( ) cos( ) tanh( )sin( )D M

D
F C DnE kx t kx t C DE kh kx t

H
= −  −  + − 

          (4) 

where n is the ratio of group velocity to wave celerity. This parameter is taken as 1 for simulation of the 

shallow water conditions. In the same formula, the wave energy is E=1/8ρgH2 where H denotes the wave 

height. Other parameters are; k denotes the wavenumber, x1 is the coordinate of pile location and the 

angular frequency is ω=2π/T where T denotes the period of the wave (Dean et al., 2000). Throughout 

this study, the computational parameters are selected to be CD=1, CM=2, D=1m, H=1m, ρ=1025 kg/m3, 

g=9.81m/s2, h=10m, T=15s, x1=0 for representation of a realistic monochromatic wave loading. The 

wavenumber is calculated using /k gh=  for simulation of the shallow water conditions. 

 

2.2. Long Short Term Memory (LSTM) Networks 

Recurrent neural networks (RNN) deep learning methods were developed in the 1980s (Hochreiter et 

al.,1997; Olah, 2015). Thanks to this neural network architecture, predictions can be made using serial 

data sets. Especially in time-series analysis, the RNN structure is widely used (Hochreiter et. al, 1997; 

Olah, 2015). However, it was seen that gradient disappearance or gradient burst events frequently occur 

during the use of long series (Hochreiter et. al, 1997).  The Long Short Term Memory (LSTM) 

architecture was developed in 1997 to fix these problems (Hochreiter et al., 1997). Thanks to the gates 
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of this neural network architecture, the information flow can be done smoothly, even between long 

series. Using the gate, it is decided which information will be forgotten and which data will be retained 

and transferred. These gates are a forgotten gate, input gate, and output gate, respectively. It also has its 

memory cell outside of the passages. It is seen that it is different from the classical RNN structure due 

to its features. The mathematical expressions of forget gate, update gate, output gate, and memory cell 

are below: 

Forget Gate: 

(t) (t) (t 1)

, j , j(b )f f f

i i i j i j

y y

f U x W h −= + +              (5) 

State Unit: 

( ) ( ) ( 1) (t) (t 1)

j jb( )t t t t

i i i i i i i

y y

s f s g U x W h− −= + + +             (6) 

Input Gate: 

(t) (t) (t 1)

j j(b )g g g

i i i i

y y

g U x W h −= + +               (7) 

Output Gate: 

(t) (t) (t 1)

, j j , j j(b )o o o

i i i i

y y

q U x W h −= + +               (8) 

The Output: 

(t) (t) (t)tanh(s )i i ih q=                (9) 

Here the b ,b ,bf g o

i i i  paramaters show the bias values in the input, output, and forget gates. The 

, , , ,, , ,f g o

i j i j i j i jU U U U  parameters denote the input weights belonging to the gates. The parameters 

, , , ,, W , W , Wf g o

i j i j i j i jW  indicate the recurrent weight of the gate to which they belong. The parameter X is 

the input time series (Hochreiter et al., 1997; Olah, 2015). The reader is referred to Hochreiter et al.  

(1997) and Olah (2015) for a more comprehensive discussion of the LSTM network and its applications. 

 

We use the LSTM network for the prediction of the wave force induced by a monochromatic wave 

which is modeled using the Morison equation. Then, the predicted force time series, FD(t), is applied to 

the right-hand side of Eq. (1) by simple addition in the reverse direction of F(t). In a real scenario, such 

a feedback force can be realized by energy dissipation devices, tuned-mass-dampers, or similar 

structures. 

 

3. Results and Discussion 

In Fig. 1 we depict the forecasted time-series of the Morison force obtained using the LSTM network 

without updates. For this forecast initial 90% of the time-series data, which corresponds to the first 45s 

of 50s data, is used. The forecast only relies on this first part of the data, no updates from the observations 

during the forecast phase are used. As indicated in Fig. 1, the LSTM network with no updates is 

successful in predicting the Morison force time series. The comparison between the forecast time-series 

and the actual time series and the RMS error are depicted in Fig. 2. As this figure confirms, the order of 

RMS error is much smaller compared to the order of the magnitude of the time series, thus a reliable 

prediction is performed using the LSTM network. 
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Figure 1. Forecast of the Morison force time-series by LSTM network without updates. 

 

Figure 2. Forecast of the Morison force time-series by LSTM network without updates and RMS error. 

 

Although the predictions depicted in Fig. 1 and Fig. 2 show reliable results for the prediction of the 

Morison force, it is known that LSTM based deep-learning predictions can give unreliable results in the 

case of irregular and spiky data. Thus, as a remedy, the LSTM network is used with updates, that is the 

forecasted part of the time series are updated by the new data observed during the forecast phase. With 

this motivation, we depict the Morison force time-series predictions obtained by LSTM network with 

updates in Fig. 3. As this figure confirm, the forecast results are similar to the forecasts depicted in Figs. 

1 and 2 obtained using LSTM with no updates, however an improvement in the RMS error is still 

observable. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Forecast of the Morison force time-series by LSTM network with updates. 
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Figure 4. Displacement of a pier a) uncontrolled case b) controlled by feedback force predicted using 

LSTM without updates. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Displacement of a pier a) uncontrolled case b) controlled by feedback force predicted using 

LSTM with updates. 

 

The importance of the LSTM network with updates would be very crucial for the case of irregular data 

with spikes. After successful prediction of the Morison force time series, we solve the equation of the 

motion of a pier pile given in Eq. (1) using the ode45 solver starting from the aforementioned initial 

conditions. We depict the displacements of the modelled pier pile obtained by using the ode solver with 

no control and with feedback force predicted using the LSTM with no updates and updates in Figs. 4 

and 5, respectively. As Figs. 4 and 5 confirm, the feedback force forecasted by LSTM can be used to 

control the vibration dynamics and reduce the vibration amplitudes effectively. The feedback force 

applied for the vibration control forces is applied between the times of t=45s-50s. Due to the 

cancellation effect of the feedback force, the system behaves like an unforced damped harmonic 

oscillator after the time of t=45s. Due to the success of LSTM with no updates in predicting the time 

series of the Morison force, the results depicted in Figs. 4 and 5 are very similar. However, as mentioned 

before, for an irregular data set with many peaks, the LSTM with updates is expected to be more 

successful in vibration control applications. Although the results depicted here are for displacements, 

one can extend them to velocities, accelerations, and other displacement parameters. One research 

direction to follow is the use of different deep learning networks such as GRU networks with similar 
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purposes. Also, different vibration control strategies such as state variable feedback and output feedback 

approach can also be proposed together with the deep learning algorithms. Our findings can be 

successfully used to control the vibrations of coastal and ocean structures. 

 

4. Conclusion 

In this study, we have considered the vibration control problem of coastal and ocean structures by using 

the deep learning approach. More specifically, we considered the vibration dynamics of a pier under the 

excitation of a monochromatic wave loading. It is shown that using the LSTM network, the prediction 

of wave force can be performed and this prediction can be used as a feedback force to reduce/control 

the vibration amplitudes and frequencies. We showed that LSTM with no updates and with updates can 

be used for this purpose, however, it is expected that the LSTM with updates taken from measurements 

in the prediction phase will be more successful in the case of irregular data. Although such an LSTM 

with updates approach limits the successful application with the one-time step of the input data, it would 

be beneficial for many engineering purposes such as avoiding structural damage and saving lives. In 

near future, we aim to extend our findings to irregular waves, as well as other vibration control strategies 

such as state variable feedback or output feedback. 

 

Acknowledgements 

The author gratefully acknowledges the support of the İstanbul Technical University. This work was 

supported by the Research Fund of the İstanbul Technical University. Project Code: MGA-2020-42544. 

Project Number: 42544. 

 

References 

Dean, R. G., & Dalrymple, R. A. (2000). Water wave mechanics for engineers and scientists (Vol. 2). World 

Scientific Publishing Company. https://doi.org/10.1142/1232 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. 

https://doi.org/10.1007/s10710-017-9314-z 

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9 (8), 1735-1780. 

DOI: 10.1162/neco.1997.9.8.1735 https://doi.org/10.1162/neco.1997.9.8.1735 

Kandasamy, R., Cui, F., Townsend, N., Foo, C. C., Guo, J., Shenoi, A., & Xiong, Y. (2016). A review of 

vibration control methods for marine offshore structures. Ocean Engineering, 127, 279–297. 

https://doi.org/10.1016/j.oceaneng.2016.10.001 

Kim, D. H. (2009). Neuro-control of fixed offshore structures under earthquake. Engineering Structures, 31 

(2), 517-522. https://doi.org/10.1016/j.engstruct.2008.10.002 

Madkour, A., Hossain, M. A., Dahal, K. P., & Yu, H. (2007). Intelligent learning algorithms for active 

vibration control. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and 

Reviews), 37 (5), 1022-1033.  https://doi.org/10.1109/TSMCC.2007.900640 

Morison, J. R., Johnson, J. W., & Schaaf, S. A. (1950). The Force Exerted by Surface Waves on Piles. Journal 

of Petroleum Technology, 2 (5), 149–154. https://doi.org/10.2118/950149-G 

Olah, C. (2015). Understanding LSTM networks. Accession Date: 22 August 2021. Available from: 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/   

Zhang, B. L., Han, Q. L., & Zhang, X. M. (2017). Recent advances in vibration control of offshore 

platforms. Nonlinear Dynamics, 89 (2), 755-771. https://doi.org/10.1007/s11071-017-3503-4 

 

 

 

 

 

 

https://doi.org/10.1142/1232
https://doi.org/10.1007/s10710-017-9314-z
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.oceaneng.2016.10.001
https://doi.org/10.1016/j.engstruct.2008.10.002
https://doi.org/10.1109/TSMCC.2007.900640
https://doi.org/10.2118/950149-G
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.1007/s11071-017-3503-4


2nd International Conference on Applied Mathematics in Engineering (ICAME’21)  

September 1-3, 2021 - Balikesir, Turkey 

 

159 

 

Analysis Methods and FPAA Implementation of Hyperchaotic Systems 

 

Gülnur Yılmaz*, Enis Günay 

 

Erciyes University, Electrical & Electronics Engineering Department, Kayseri, Turkey 

gulnur.yilmaz@erciyes.edu.tr, egunay@erciyes.edu.tr 

 

Abstract 

In this study, hyperchaotic systems in the literature are investigated and analyzed. At first, systems with 

different structures are specified. Then, the methods used in the analysis of hyperchaotic systems are 

studied. Phase portraits, time series, Lyapunov exponents, bifurcation diagrams, and Poincare maps are 

analyzed. Furthermore, chaotic structure of the systems is demonstrated by power spectrum and 0-1 

tests. After all analysis methods are completed, FPAA implementation is performed, and the 

implementation results are given at the end.  

 

Keywords: Hyperchaos, Lyapunov exponents, bifurcation diagrams, Poincare maps, power spectrum, 

0-1 tests, FPAA 

 

1. Introduction 

Chaotic systems have been in our lives since the last century and have a great contribution to the 

literature as the source of many studies in different fields. Sensitivity to initial conditions, deterministic 

but unpredictable structure are the most distinctive characteristics of these types of nonlinear systems. 

Systems that have the same characteristics as chaotic systems but exhibit more complex dynamic 

behaviors and were first introduced to the literature at the end of the 1970s are called hyperchaotic 

systems. They differ from chaotic systems in terms of having at least 2 positive Lyapunov exponents 

and at least 4 system dimensions. Demonstrating more complex dynamic behaviors makes the 

hyperchaotic systems valuable for some implementation areas, especially in communication and 

cryptology, where security is of great importance. 

When the historical development of hyperchaotic systems is examined, it is possible to get the same 

type of systems used in different research. It is known that hyperchaos was first introduced theoretically 

by Rössler (Rössler, 1979) in 1979. Experimentally, for the first time, Chua et al. (Chua & Kobayashi, 

1986) observed hyperchaotic behavior on the electronic circuit designed in 1986. In this study, they 

obtained a 4th order hyperchaotic system from a simple circuit design by making modifications on the 

Chua circuit, which shows chaotic behavior. Furthermore, the Chua circuit has been the subject of 

different studies for generating hyperchaotic systems (Cannas & Cincotti, 2002; Fitch et al., 2012; 

Kapitaniak et al., 1994). Besides the Rössler and Chua systems, another system used for hyperchaos 

generation is the Lorenz system. By adding different control parameters and variables to the 3-

dimensional Lorenz system, 4, 5, 6, and 7 dimensional systems were obtained and hyperchaotic behavior 

was observed (Li et al., 2005; Yang et al., 2015, 2018; Yang & Chen, 2013). On the other hand, 3-

dimensional Lü chaotic system was transformed into a 4-dimensional system by adding fourth state 

variable in and a new hyperchaotic model was obtained (Chen et al., 2006). This system was modified 

by Bao et al. (Bao & Liu, 2008) by using different parameters and the hyperchaotic structure of the 

system was observed. 
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Another hyperchaotic model, which has a similar structure to the Lü system was proposed by Gao et al. 

(Gao et al., 2006). In this study, 3-dimensional chaotic structure proposed by Chen is transformed into 

a 4-dimensional hyperchaotic system. Chen system has also been modified and different hyperchaotic 

models were created (Jia et al., 2010; H. Wang & Cai, 2009). In addition to these studies, there are other 

types of hyperchaotic models such as Qi (Yujun et al., 2010), Liu (F. Q. Wang & Liu, 2006), Wang (Z. 

Wang et al., 2012), Rabinovich (Liu et al., 2010), and Sprott (Ojoniyi & Njah, 2016) system. 

In this study, dynamic structure of hyperchaotic systems is analyzed by phase portraits, time series, 

Lyapunov exponents, bifurcation diagrams, Poincare maps, power spectrum, and 0−1 test. Also, FPAA 

implementation, illustrating on Lorenz hyperchaotic system, is given and results are considered. 

 

2. Methods Used in the Analysis of Hyperchaotic Systems  

2.1. Phase-space Diagrams and Time Series 

Phase-space diagrams are obtained by analyzing the behavior of state variables of dynamic systems 

relative to each other. These phase diagrams have a closed-loop shape in a periodic system while they 

have more complex structured shape in a chaotic system. As an example, Rössler (Rössler, 1979) 

hyperchaotic system is considered and 4-dimensional system model is given in Equation (1).  

�̇� = −(𝑦 + 𝑧)      
�̇� = 𝑥 + 𝑎𝑦 + 𝑤  
�̇� = 𝑥𝑧 + 𝑏           
�̇� = −𝑐𝑧 + 𝑑𝑤    

                            (1) 

where the fixed parameters are (a, b, c, d) = (0.25, 3, 0.5, 0.05). Also, initial conditions of the system 

(1) are defined as (x0, y0, z0, w0) = (−20, 0, 0, 15). According to these parameter values, 3-D phase-space 

graph and time series obtained for the x-y-z-w state variables are shown in Figure 1.a and b, respectively.  

2.2. Lyapunov Exponents  

Lyapunov exponents are one of the analysis methods in which the dynamic structure of a system is 

measured numerically. The exponential divergence of the orbits for different initial conditions of a 

dynamic system is an indication that the system has a positive Lyapunov exponent, and these systems 

are in a chaotic structure (Wolf et al., 1985). A hyperchaotic system must have at least 2 positive 

Lyapunov exponents. As an example of this analysis method, Lorenz hyperchaotic system (X. Wang & 

Wang, 2008) given in Equation (2) has been considered. 

Figure 1. a) 3-D phase-space representation for Rössler system b) Time series of Rössler system for x, 

y, z, w space variables 

a) b) 
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�̇� = 𝑎(𝑦 − 𝑥) + 𝑤      
�̇� = 𝑐𝑥 − 𝑦 − 𝑥𝑧         
�̇� = 𝑥𝑦 − 𝑏𝑧                 
�̇� = −𝑦𝑧 + 𝑟𝑤             

               (2) 

 

where (a, b, c) parameters are specified as (10, 8/3, 28), respectively. Lyapunov exponents are calculated 

for the r parameter, which varies in the range of [−7 0], and the resulting graph is shown in Figure 2.a. 

The system exhibits hyperchaotic behavior for the values of r greater than approximately -1.5. 

 

2.3 Bifurcation Diagrams 

Variation of the system parameters can cause changes in the dynamic behavior of the system. Bifurcation 

diagrams can be obtained by plotting the state variables of the system relative to the control parameter 

changes in a certain range. These diagrams give information about the dynamic behaviors of a system 

at what values the system enters chaos or has a periodic structure. For the hyperchaotic Lorenz system 

given in Equation (2), the bifurcation diagram is studied and given in Figure 2.b. Vertical and horizontal 

axes represent the x state variable and the r parameter, respectively. As seen from the graph, the system 

is periodic when r is approximately between [-3.1, -1.5] and it demonstrates hyperchaotic behavior for 

greater values. 

2.4 Poincare Maps  

Poincare maps are obtained by transforming an n-dimensional continuous-time system into an (n-1)-

dimensional discrete-time system and graphing in cross-sections. With this method, the dynamics of a 

system can be decided by determining the points where the orbit passes. If there is a single fixed point 

on the map, this indicates that the system follows the same trajectory continuously and it is periodic. 

However, if the system is chaotic, a shape consisting of random points is obtained. Poincare transform 

is applied to the Wang-Cang (Z. Wang et al., 2012) system given in Equation (3).  

�̇� = 𝑦                                      
�̇� = −𝑥 + 𝑦𝑧 + 𝑎𝑥𝑧𝑤        

�̇� = 1 − 𝑦2                           
�̇� = 𝑧 + 𝑏𝑥𝑧 + 𝑐𝑥𝑦𝑧           

              (3) 

When the system parameters (a, b, c) are considered as respectively (8, -2.5, -30) and the initial values 

are 0.1 for all state variables, the system exhibits hyperchaotic behavior. Poincare Map where the chaotic 

structure can be observed is given in Figure 3.a. 

b) 

a) 

Figure 2. a) Lyapunov Exponents and b) Bifurcation diagrams of Lorenz hyperchaotic system 

b) 
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2.5 Power Spectrum  

Another method used to analyze the chaotic structure of a system is power spectrum analysis. When a 

power spectrum graph is examined in a periodic system, it is seen that it increases only in some 

frequency values, while in a chaotic system, a noise-like graph spreading over a wider frequency band 

is obtained. Power spectrum analysis has been realized for the Sprott B (Ojoniyi & Njah, 2016) system 

given in Equation (4). Results for periodic and hyperchaotic cases are depicted in Figure 3.b. 

�̇� = 𝑦𝑧 − 𝑣                 
�̇� = 𝑥 − 𝑦 − 𝑤          
�̇� = 1 − 𝑥𝑦                 
�̇� = 𝑎𝑥 + 𝑦                 
�̇� = 𝑥                           

               (4) 

In the Sprott B system, when the control parameter a equals -0.81, the system is periodic. However, if 

a is considered as 0.16, system dynamics change to hyperchaotic. Accordingly, the power spectrum 

graph obtained and shown in Figure 3.b. Top figure demonstrates the periodic case while the 

hyperchaotic case is given bottom.  

2.6. 0-1 Test  

The 0−1 test is a method used for the analysis of chaotic systems applied on binary basis. Complex 

dynamics of a system can be specified by using only the time series without the need for analysis phase 

space representation or calculation of the Lyapunov exponent (Gottwald & Melbourne, 2004). p and q 

variables using time series data are calculated first and then the graph of p vs q is obtained. If the graph 

has a regular shape, the system is periodic. On the other hand, system behavior is hyperchaotic for 

irregular shapes. Sprott B hyperchaotic system, given in equation (4), is used for the 0−1 test. Parameter 

a is considered as -0.81 and 0.16 for periodic and hyperchaotic structures, respectively. 0-1 test results 

are given in Figure 4.a and 4.b demonstrating regular and irregular shapes of Sprott B.  

a) b) 

Figure 3. a) Poincare maps of Wang-Cang System b) Power spectrum of Sprott B system 
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3. FPAA Implementation 

Field Programmable Analog Arrays (FPAAs) are a way of modeling and implementing analog 

dynamical systems on a programmable platform. FPAAs are reconfigurable devices which is an 

advantage to change dynamics of the model even during implementation (Kılıç, 2010). They also 

provide a simple experimental setup that eliminates analog circuit complexity (Hasler, 2020).  

AN231E04 Quad type FPAA is used for implementing Lorenz hyperchaotic system in this study. System 

(2) is designed on Anadigm Designer 2 and given in Figure 5.a. Implementation result for x-y dimensions 

is shown in Figure 5.b. Also, simulation result for the x-y dimensions is given at top of the Figure 5.b 

and it is seen that simulation and implementation results are consistent.  

 

4. Conclusion 

In this study, analysis methods of hyperchaotic systems were investigated and performed on Rössler, 

Lorenz, Wang-Cang, and Sprott B systems. Then FPAA implementation of the Lorenz system is carried 

out and results are provided. Moreover, consistency of simulation and implementation results are 

considered.  
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Abstract 

The vaccination process has finally started for the pandemic that the whole world has been trying to 

cope with in recent years. In this context, the vaccination process has started in many countries. Most of 

the people in Turkey have been vaccinated since January in order of priority by age or occupational 

group (healthcare workers, teachers... etc.). People can get an appointment from the online system of 

The Ministry of Health and be vaccinated at specified times they select. At this point, different service 

quality is revealed in the vaccination process for different hospitals. In this study, we try to determine 

the priorities of the criteria that hospitals should consider for the vaccine service quality measurement 

process. For this purpose, we apply the SERVPERF (Service Performance) and multi-criteria decision-

making (MCDM) approach to weighting the service performance attributes of hospitals in the COVID-

19 vaccination process. Using the dimensions of the SERVPERF model, MCDM analysis is developed 

to deal with all the qualitative and quantitative criteria in the decision process is obtained. In addition, 

fuzzy sets are adopted to reflect the uncertainty to the decision-making process in the best way. As a 

result of this paper, the most important performance criteria on the vaccination process will be 

determined for the people who will be vaccinated, and it will be determined which criteria should be 

given more importance by hospitals in providing vaccination services. With this study, a quantitative 

analysis of the service quality of hospitals in the vaccination process will be presented for the first time. 

 

Keywords: COVID-19, Fuzzy Logic, Hospital, MCDM, SERVPERF, Vaccination 

 

1. Introduction 

As a result of the acceleration of vaccination activities all over the world, different service quality levels 

are revealed in the vaccination process for different hospitals. Thus, it has emerged that the evaluation 

of the perceived service performance quality in hospitals should be implemented within the vaccination 

process. In this way, it is expected that the new horizon will be opened for the measures that can be 

taken to eliminate drawbacks for people who have hospital-based hesitations during the vaccination 

process. In this paper, we aim to determine the priorities of the factors to be used in measuring the 

perceived performance quality in hospitals where vaccines are applied during the COVID-19 period. 

For this aim, the SERVPERF (Service Performance) and multi-criteria decision-making (MCDM) under 

fuzzy environment approaches are adopted in weighting the service performance attributes of hospitals 

in the COVID-19 vaccination process. Using the dimensions of the SERVPERF model and new criteria 

identified along with this paper, fuzzy MCDM analysis is developed to deal with all the qualitative and 

quantitative criteria in the decision process. Interval-valued fuzzy sets are also adopted to reflect the 

uncertainty to the decision-making process in the best way. Besides, by applying the AHP method in 
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the Pythagorean fuzzy environment, it is aimed to get the best results in decision problems with 

conflicting criteria in an uncertain environment and vagueness. 

Examples of newsworthy studies conducted with the SERVPERF method in order to measure the quality 

perception in hospitals can be given as follows. Akdere et al. (Akdere, Top, & Tekingündüz, 2020) 

applied the SERVPERF method to measure the service quality perceptions of patients in a public 

hospital in Turkey. Giao et al. (Giao, Thy, Vuong, Van Kiet, & Lien, 2020) used the SERVPERF model 

to identify factors affecting outpatient satisfaction for five private hospitals in China. Arab et al. (Arab, 

Tabatabaei, Rashidian, Forushani, & Zarei, 2012) used the SERVPERF questionnaire to determine 

hospital service quality from the patients' perspective and the relative importance of quality dimensions 

in predicting patient adherence. Subiyakto et al. (Kot & Syaharuddin, 2020) adopted the dimensions of 

SERVPERF to measure outpatient satisfaction with radiology facilities in public hospitals in a specific 

region of Indonesia. Dako et al. (Lim et al., 2018) adopted the SERVPERF approach to measure the 

perceptions of service quality for patients in a PET/CT Centre. 

The SERVPERF approach has been used in some studies by hybridizing it with the MCDM method. 

For example, Zehmet and Jawad (Zehmed & Jawab, 2020b) applied the SERVPERF method in fuzzy 

environment and developed a three-step approach using Data Envelopment analysis to determine the 

relative quality of service at the level of bus routes. Lee and Kang (S. Lee & Kang, 2019) proposed an 

approach based on objective and subjective weights for the assessment of airway service quality, using 

SERVPERF with interval-valued fuzzy GRA. Abdolvand and Rahpeima (Abdolvand & Rahpeima, 

2013) applied a hybrid approach consisting of SERVPERF, entropy method and TOPSIS method in 

evaluating an insurance company's branches based on customers' perceptions of their shopping 

experience. Jeronimo and Medeiros (Jerônimo & Medeiros, 2014) presented a model to guide 

organizations according to the relative importance of customer satisfaction, using the dimensions of the 

SERVPEF method and the fee dimension as inputs for the ELECTRE-III method. Zhi-gang (Zhi-gang, 

2015) revealed a revised SERVPERF model and seventeen taxi service quality indexes for taxi service 

quality assessment and ranked participants' ranked perceptions of taxi service quality using the VIKOR 

method.  Besides, Pythagorean fuzzy AHP has been a frequently used approach in decision making 

problems in the literature recently (Alkan, 2021; Bakioglu & Atahan, 2020; Boyacı & Şişman, 2021; 

Otay & Jaller, 2020; Seker & Kahraman, 2021; Tepe & Kaya, 2020). Based on all these literature studies, 

we tried to measure the service performance of hospitals by combining the SERVPERF tool with the 

interval-valued Pythagorean fuzzy AHP in this study. Our study points to an innovation in the literature 

in terms of the adopted methodology. 

 

2. Proposed Methodology 

2.1. SERVPERF 

The SERVPERF model was first used by Cronin and Taylor in 1992 to measure the service quality score 

on 22 items based only on customer perception (Cronin & Taylor, 1992). The SERVPERF method apply 

perceived performance of customers as the measure of service quality directly (H. Lee & Kim, 2014). 

The SERVPERF method was developed in order to overcome the deficiencies of the SERVQUAL 

method developed in 1985 in the measurement of service quality, such as operationalization, validity, 

and combining expectations and perceptions (Zehmed & Jawab, 2020a).  

 

2.2. Interval-Valued Pythagorean Fuzzy Analytic Hierarchy Process (PF-AHP) 

The steps of the interval valued PF-AHP method are shown in the following ( Ilbahar, Karaşan, Cebi, 

& Kahraman, 2018; Özkan, Kaya, Erdoğan, & Karaşan, 2020): 

Step 1. Compromised pairwise comparison matrix R= (rjt)mxn is constructed according to experts’ 

evaluations. The linguistic scale that is used for decision matrices is presented in Table 1. 
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Step 2. The differences matrix D = (dij )mxm is found between lower and upper points of the membership 

and non-membership functions using Eqs. (1) and (2): 

𝑑𝑖𝑗𝐿
= 𝜇𝑖𝑗𝐿

2 − 𝑣𝑖𝑗𝐿
2               (1) 

 

Table 1. Scale for the interval-valued PF-AHP evaluations 
 

Interval Valued Fuzzy Number The corresponding crisp value 

Linguistic Terms µL µu ƲL Ʋu  

Certainly Low Importance -CLI 0.00 0.00 0.90 1.00 1/9 

Very Low Importance – VLI  0.10 0.2 0.8 0.9 1/7 

Low Importance – LI 0.20 0.35 0.65 0.8 1/5 

Below Average Importance -BAI 0.35 0.45 0.55 0.65 1/3 

Equal  Importance – EI 0.45 0.55 0.45 0.55 1 

Above Average Importance – AAI 0.55 0.65 0.35 0.45 3 

High Importance – HI 0.65 0.80 0.20 0.35 5 

Very High Importance – VHI 0.80 0.90 0.10 0.20 7 

Certainly High Importance – CHI 0.90 1.00 0.00 0.00 9 

 

𝑑𝑖𝑗𝑈
= 𝜇𝑖𝑗𝑈

2 − 𝑣𝑖𝑗𝑈
2                          (2) 

Step 3. The interval multiplicative matrix S = (sij)mxm is calculated via Eqs. (3) and (4): 

𝑠𝑖𝑗𝐿
= √1000

𝑑𝑖𝑗𝐿                          (3) 

𝑠𝑖𝑗𝑈
= √1000

𝑑𝑖𝑗𝑈                          (4) 

Step 4. The indeterminacy value H = (hij)mxm of the rjt is calculated with using Eq. (5): 

ℎ𝑖𝑗 = 1 − (𝜇𝑖𝑗𝑈
2 − 𝜇𝑖𝑗𝐿

2) − (𝑣𝑖𝑗𝑈
2 − 𝑣𝑖𝑗𝐿

2)                         (5) 

Step 5. The indeterminacy degrees are multiplied with S = (sij)mxm matrix to calculate the matrix of 

unnormalized weights T = (τij)mxm via Eq. (6): 

𝑡𝑖𝑗 = (
𝑠𝑖𝑗𝐿

+𝑠𝑖𝑗𝑈

2
) ℎ𝑖𝑗                          (6) 

Step 6. The priority weights wi are obtained via Eq. (7). 

𝑤𝑖 =
∑ 𝑡𝑖𝑗

𝑚
𝑖=1

∑ ∑ 𝑡𝑖𝑗
𝑚
𝑗=1

𝑚
𝑖=1

                           (7) 

3. Real Case Study 

In this study, a prioritization analysis is carried out for the criteria to be used in determining the 

vaccination performance of hospitals in the COVID-19 period. At this point, first of all, SERVPERF 

dimensions are discussed, and then the factors to be considered in the pandemic period for hospital 

evaluation are investigated. Considering the relevant literature and expert opinions, it has been 

determined that "Pandemic" and "Smartness" factors should also be taken into account in the evaluation 

of the criteria along with the SERVPERF dimensions. While deciding which hospitals to be evaluated, 
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the hospitals serving in Istanbul are taken into consideration and the most intensive hospitals are selected 

in terms of both COVID-19 treatment applications and vaccine application. Quality managers from five 

different hospitals are interviewed to determine the order of importance of the factors to be used in 

measuring the perceived performance quality in hospitals where vaccines are applied during the 

COVID-19 period. These quality experts are asked to evaluate the SERVPERF dimensions and the 

factors identified in this study. Experts are requested to make an evaluation by using to the scale given 

in Table 1 while determining the relative importance of the criteria to each other. As an example, the 

table of the first expert, which includes the evaluation of the criteria against each other, is added as 

follows. 

Table 2. Evaluations of Expert-1 

Expert-1  Tangibles Reliability Assurance Responsiveness Empathy Smartness Pandemic 

Tangibles EI BAI AAI EI HI AAI BAI 

Reliability AAI EI HI AAI HI EI AAI 

Assurance BAI LI EI LI AAI BAI LI 

Responsiveness EI BAI HI EI HI AI BAI 

Empathy LI LI BAI LI EI BAI LI 

Smartness BAI EI AAI EI AAI EI BAI 

Pandemic AAI BAI HI AAI HI AAI EI 

 

After receiving evaluations from five different experts, it is first examined whether these evaluations are 

consistent. For this purpose, the consistency analysis suggested by Saaty (Saaty, 1980, 1990, 2003) is 

carried out for each expert's evaluation matrix. Consistency analysis is performed by referring to the 

crisp values corresponding to linguistic assessments in Table 1, and all pairwise comparison matrices 

are obtained consistent (Consistency Ratio (C.R.) <0.1) as shown in Table 3 for each expert (E).  

Table 3. Consistency Ratio for Each Matrices 

Matrix  C.R. 

Pairwise Comparison Matrix of E-1 0,093255 

Pairwise Comparison Matrix of E-2 0,081157 

Pairwise Comparison Matrix of E-3 0,099490 

Pairwise Comparison Matrix of E-4 0,047493 

Pairwise Comparison Matrix of E-5 0,085952 

 

After calculating the consistency ratios, the steps of the interval-valued Pythagorean fuzzy AHP are 

implemented and dimension weights are obtained for each expert evaluation. In order to find the final 

weights, the weights for the five experts are aggregated via geometric mean. Table 4 shows the weights 

found as a result of each expert assessment, and the final results. 

Table 4. Weights of the Dimensions 

Dimension  E-1 EM-2 EM-3 E-4 E-5 Aggregated Weights 

Tangibles 0,157 0,240 0,136 0,289 0,159 0,188 

Reliability 0,231 0,190 0,150 0,139 0,221 0,182 

Assurance 0,063 0,046 0,116 0,070 0,091 0,073 

Responsiveness 0,177 0,159 0,276 0,123 0,164 0,173 

Empathy 0,038 0,041 0,038 0,071 0,077 0,050 

Smartness 0,110 0,121 0,122 0,123 0,148 0,124 

Pandemic 0,224 0,203 0,163 0,185 0,140 0,181 
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When the results obtained are evaluated, it is determined that the criterion that should be given the most 

importance in the evaluation of hospital performances for vaccination during the pandemic process is 

the "tangibles" criterion, followed by the "reliability" and "pandemic" criteria with very close 

importance levels. The least important criterion is determined as "empathy." As a result, the factors that 

affect the hospital performance the most and the least in the COVID-19 vaccination process have been 

successfully identified. 

 

4. Conclusion and Future Suggestions 

In this study, it is determined the priorities of the criteria that hospitals should consider for the service 

performance measurement for vaccine process. The SERVPERF and fuzzy MCDM approaches are 

applied for weighting the service performance attributes of hospitals in the COVID-19 vaccination 

process. For this aim, SERVPERF and interval-valued Pythagorean fuzzy AHP methods are adopted. 

Interval-valued fuzzy sets are adopted to reflect the uncertainty to the decision-making process in the 

best way. As a result of the analysis values obtained, it is determined that the factor that most affected 

the performance of the hospitals for the COVID-19 vaccination process is "tangibles" and the factor that 

affected the least is "empathy". 

For future studies, the criteria can be further detailed by breaking down on the basis of sub-criteria and 

the results can be compared using different MCDM methods. In addition, service performance 

comparisons can be made on the basis of criteria and weights determined for different hospitals for 

vaccination process of COVID-19.  
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Abstract 

It is known that organizations consist of a combination of several causal factors. Organizational 

Configurations theory had started with the contingency theory. Contingency theory is known as, an 

organization cannot be configured with the best single structure and Organizational Configurations 

theory has developed by the equifinality approach. Equifinality is defined as, “a system can reach the 

same final situation from different and original starting points”. It has been stated that businesses with 

similar practices and strategies can be seen as clustered groups and these decisive organizational 

characteristics and strategies shape the performance of the enterprise. Therefore, the importance of 

Organizational Configurations approach is increasing. However, since the sustainable performance of 

the enterprises can be supported with the efforts of the satisfied employees, the Organizational 

Configurations that are desired to be formed should be shaped accordingly. With this study, the 

automotive spare parts sector of Central Anatolia Region was selected as the main sample and high 

performing Organizational Configurations was determined based on the Miles and Snow typologies 

theory. The relationship between the targeted output and the set of independent variables that make up 

this output was determined by Fuzzy Set Qualitative Comparative Analysis, which aims explaining with 

the set theoretical approach. While providing high enterprise performance, the arrangements to be made 

in order to have high job satisfaction at the same time according to Decision Makers choices, are 

modelled by the help of Compromise Programming which is one of the Operations Research methods. 

The results of the study support the Miles and Snow typologies. Finally, the results show that, enterprises 

that manage their entrepreneurial, engineering and administrational problems with solutions suitable for 

environment and competition conditions, authorizing the employees and encouraging them to participate 

in the management processes, reach high performance and job satisfaction results. 

 

Keywords: Organizational Configurations, Performance, Job Satisfaction, fsQCA, Compromise 

Programming, Multi Criteria Decision Making 

* Produced from the doctoral thesis of the same title. 

 

1. Introduction 

Within the scope of structure, process and strategy dimensions, the configuration groups formed by all 

these alternatives are called Organizational Configurations (OC). The choices of these configurations 

can affect business performance and employee job satisfaction. While a decentralized and innovative 

organization can both increase business performance and increase the level of employee job satisfaction, 

an organization that maintains its central and current status will increase business performance and 

decrease employee job satisfaction in certain situations. There is not yet any empirical study on the 

organizational configurations approach in Turkey. For this reason, with this study, the first field research 

was carried out with the aim of both closing this gap and providing a happy working environment 

without compromising the goals. It is aimed to offer a solution to the ongoing problem of businesses to 

be completely performance-oriented in order to compete and to neglect the job satisfaction of 
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employees, which are their most important resources. Since multi-disciplinary studies provide a multi-

dimensional perspective, an interdisciplinary contribution has been made to the business and 

management literature with the operations research method. 

In this study, how OC affects employee job satisfaction and business performance, in which cases 

business performance increases, in which situations the level of employee job satisfaction increases, 

what is/are OC that increases both criteria will be examined. Accordingly, the study consists of three 

parts. In the first part, it is aimed to contribute to the field of management science with an 

interdisciplinary method in order to express the importance of the study. Updates and eclectic 

contributions, and how a tool can be provided to implementing managers in case of success are 

mentioned. The concept of OC and the antecedent theories that revealed this concept are mentioned. 

The concept of business performance, its measurement, the concept of employee job satisfaction, its 

measurement and dimensions, and the relations of all these concepts with each other are mentioned. 

Finally, the operations research method to be used in the selection of configurations that improve both 

business performance and employee job satisfaction is mentioned. 

 

2. Problem Definition 

Organizational configurations, organizational clusters that share features such as business strategies, 

organizational structures and processes, occur together, and in which the harmony between all necessary 

variables in terms of structure and content are gathered in a single orientation (Miller, 1987; Mintzberg, 

1979; Miller, 1996; Siggelkow, 2002). In the study, although there are many OC’s found in the literature, 

the reason why Miles and Snow's typologies were chosen is that they have high generalizability, very 

strong theoretical bases and empirical responses, and receive very high support from confirmatory 

studies (Hambrick, 1983; Mitchell and Zmud, 2006; Johansen, 2007; Pleshko and Nickerson, 2008; 

Smith et al., 1989).  

Miles and Snow's typology includes four dimensions. Defenders tend to balance by keeping control of 

the market segment they have identified. In order to achieve these goals, they appeal to a narrow segment 

of the total market by producing only a limited variety of products. In this limited framework, they 

fiercely advocate economic measures such as price competition and high quality to prevent competitors 

from entering this market. The Prospectors move in many directions against their chosen environment, 

diametrically opposite to the defenders. In general, they are more dynamic than other companies in their 

industry. Instead of a narrow product range and market understanding, as advocates do, they show an 

approach to developing new products and seizing new market opportunities. The Analyzers operate with 

an ideal mix of analysts, defenders, and prospectors. The Reactors are businesses that try to adapt to 

their environment with incompatible and inconsistent responses. The reason for the inconsistent 

responses is that they cannot provide a solid structure and strategy relationship.  

In order to determine as many different configurations as possible, which is one of the requirements of 

the method, data has been collected from as many enterprises as time and resource constraints allow.  

In the selection of the sample, enterprises operating in the branch of "Parts and accessories for motor 

vehicles not elsewhere classified", classified with the Nace code of 29.32.30, competing to supply spare 

parts to the same automotive main industry companies were selected. In order to increase the consistency 

of the study, data were collected from businesses operating in the Central Anatolian region. Some 

statistics on the distribution of the sample by provinces are shown in Table 1, participants positions are 

given by Table 2. 

In order to determine the multi-dimensional structure and complex relationships of organizational 

configurations, companies that make fabricated production and have at least 50 employees been chosen 

rather than workshop-type manufacturing enterprises. The employee distribution of the 25 enterprises 

where the study was conducted is given in Table 3. 
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Table 1. Sample space  Table 2. Participant’s position 

City Number of Enterprises Number of Participants 
 

Position 
Number of 

Participants 

Ankara 7 23  General Manager/CEO 8 

Aksaray 2 14  Manager  16 

Konya 14 69  Executive 15 

Nevşehir 1 4  Specialist 71 

Kayseri 1 2  Blue Collar Foreman 2 

Total 25 112  Total 112 

 

Table 3. Distribution of number of employees of the businesses where the study was done 

No of Employees No of Enterprises No of White Collars 

0-50 1 2 

50-100 7 30 

100-150 4 27 

150-200 6 35 

200-250 2 23 

>250 5 100 

Total 25 217 

 

As can be seen in Figure 1, employee job satisfaction and change in business performance according to 

organizational configurations are determined as dependent variables. The dimensions that will form the 

organizational configurations with the deductive approach according to the Miles and Snow typologies 

are given as independent variables. 

 

 
Figure 1. Research model 

 

There are eleven hypotheses in the original doctoral thesis. Due to space constraints, the eleventh 

hypothesis of the study, which includes a multidisciplinary approach, and the proposed method to test 

this hypothesis will be examined. 

 

3. Proposed Method 

In some studies, in the literature, it is stated that there is a positive relationship between business 

performance and employee job satisfaction (Judge, et al., 2001), some other studies states job 

satisfaction is a cause of performance (Locke, 1976). While in other studies, performance causes job 

satisfaction (Lawler & Porter, 1967). In order to contribute to the literature in terms of achieving two 

different goals in a balanced way, the eleventh hypothesis is to try to model the adjustments that will 
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simultaneously bring the organizational configurations, business performance and employee job 

satisfaction multi-purpose goals according to internal and external environmental conditions, to the 

highest point within the specified organizational configuration. 

𝐻11: Within the determined organizational configurations, there are compromise solutions that 

simultaneously meet the objectives of business performance and employee job satisfaction. Correlation 

analysis was conducted to determine the relationships between organizational structure, environment 

and strategy dimensions (independent variables), business performance and employee job satisfaction. 

As a result of the correlation analysis, a significant relationship was found between the dimensions. In 

the multi-objective decision-making model, correlation coefficients were used while constructing the 

objective functions.  

Qualitative comparative analysis (QCA) method was used to create constraints in the multi-objective 

decision-making model, to identify configurations, to explain social phenomena and causal complexity. 

It was developed by Charles Ragin (1987,2008) both as a method and an approach. It uses 0-1 algebra 

and set theory. Fuzzy Set QCA software simplifies causal statements. The set theoretical approach 

examines the extent to which the variables in causal expressions have membership in the related feature 

set with the fuzzy logic approach. The measured variables are calibrated using anchor points to fuzzy 

number values between 0-1 using in-depth information. This calibration requires the determination of 

three qualitative benchmarks (full membership, full non-cluster and full uncertainty). Consistency shows 

how close one is getting to a perfect subset relationship. Cluster-theoretic inclusion measures the degree 

to which a type of cause or causal combination "expresses" an output. 

 

Table 4. Anchor Points in Calibrating Dependent Variables 

  Full non-membership (0) Cross-over point (0.5) Full membership (1) 

 Perceived Performance 3,14 3,81 5,00 

 Job Satisfaction 3,10 3,70 5,00 

 Organizational Size 50 250 1000 

 

The comparison table (which can also be referred to as the comparison table) analysis specified in the 

study was made separately for the same independent variables for the results of business performance 

and employee job satisfaction, in accordance with the procedure specified with the help of the fsQCA 

program. Job satisfaction results were obtained separately. Consistency cut-off point was determined as 

0.94 (must be >0.75) in the analysis for business performance. Causal prescriptions (rows) above this 

value result in the dependent variable taking a value of 1 and having a membership of 0.5 and above in 

the high-performance enterprises cluster according to the consistency values, while the rows below this 

value take a value of 0 and remain out of this cluster. The comparison chart containing these results is 

given in Table 5. As can be seen from Table 5, 11 different causal prescriptions have been reached, of 

which 6 summarize organizational configurations that provide high performance, and 5 summarize 

organizational configurations that cause low performance. Same table for the employee job satisfaction 

can be seen from Table 6. 

Compromise programming (Zeleny, 1974) was used to determine the ideal configuration that provides 

both business performance and employee job satisfaction. 

Min D, subject to Constraints; 

𝑍1 (𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑒𝑛𝑡𝑒𝑟𝑝𝑟𝑖𝑠𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒) =             (1) 

𝑎 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒*(0.265*Formalization+0.231*Participation to decisions-0.055*Hierarchy of 

authorization-0.118*Organizational Complexity- 0.176*Environmental Uncertainty+0.043*Level of 

environmental change+0.085*Diffirentiation+0.16*Cost leadership ) + 2.728*D ≥ 𝑎 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒*3.315 
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Table 5. Enterprises with high business performance 

Forma

lizatio

n 

Partici

pation 

In 

Decisi

ons 

Hier

arch

y of 

Auth

ority 

Organi

zationa

l 

Compl

exity 

Enviro

nmenta

l 

Uncert

ainty  

Enviro

nmenta

l 

Chang

e Level 

Differe

ntiatio

n 

Strateg

y 

Cost 

Lead

ershi

p 

Organi

zationa

l Size 

Freq

uenc

y 

Percei

ved 

Perfor

mance 

Consi

stenc

y 

1 0 0 0 0 0 0 1 1 1 1 0,96 

1 1 1 0 0 0 1 1 1 1 1 0,96 

1 1 0 0 0 0 0 1 1 1 1 0,96 

0 1 1 0 1 1 1 1 0 1 1 0,96 

1 1 1 1 1 1 1 0 0 1 1 0,96 

1 0 1 0 0 1 1 1 0 1 1 0,94 

1 1 1 0 0 0 1 1 0 1 0 0,94 

1 1 0 0 0 0 0 1 0 1 0 0,93 

1 0 1 1 0 1 1 1 0 1 0 0,92 

1 1 0 0 0 1 0 1 0 1 0 0,90 

1 0 1 1 1 0 1 0 0 1 0 0,89 

 

Table 6. Enterprises with high employee job satisfaction 

Formal

ization 

Partici

pation 

In 

Decisi

ons 

Hier

arch

y of 

Auth

ority 

Organi

zationa

l 

Compl

exity 

Enviro

nmenta

l 

Uncert

ainty  

Enviro

nmenta

l 

Change 

Level 

Differe

ntiation 

Strateg

y 

Cost 

Lead

ershi

p 

Organi

zationa

l Size 

Freq

uenc

y 

Job 

Satisf

actio

n 

Consi

stenc

y 

1 1 0 0 0 0 0 1 0 1 1 0,93 

1 1 1 0 0 0 1 1 0 1 1 0,92 

1 1 0 0 0 1 0 1 0 1 1 0,92 

1 1 0 0 0 0 0 1 1 1 1 0,88 

1 0 0 0 0 0 0 1 1 1 1 0,86 

1 1 1 1 1 1 1 0 0 1 1 0,85 

0 1 1 0 1 1 1 1 0 1 1 0,83 

1 1 1 0 0 0 1 1 1 1 0 0,81 

1 0 1 1 1 0 1 0 0 1 0 0,81 

1 0 1 0 0 1 1 1 0 1 0 0,76 

1 0 1 1 0 1 1 1 0 1 0 0,75 

 

𝑍2(𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑗𝑜𝑏 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛) =                 (2) 

𝑎 𝑗𝑜𝑏 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛*(0.492* Formalization +0.482* Participation to decisions -0.306* Hierarchy of 

authorization -0.12* Organizational Complexity +0.084* Environmental Uncertainty -0.394* Level of 

environmental change -0.114* Diffirentiation +0.11* Cost leadership) + 5.1679*D ≥ 

𝑎 𝑗𝑜𝑏 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛*4.738  ; Goal weights : 𝑎 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒and 𝑎𝑗𝑜𝑏 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 

 

Formalization ≥ 3; formalization ≤5; participation in decisions   ≥ 1;Participation in decisions ≤ 5; 

hierarchy of authority≤ 3;      hierarchy of authority  ≥ 1; organizational complexity ≥ 1;organizational 

complexity ≤ 3; environmental uncertainty level ≥ 1;environmental uncertainty level ≤ 3; environmental 

change level  ≥ 1; environmental change level  ≤ 3; differentiation ≥ 1; differentiation ≤ 3; cost leadership 

≥ 3; cost leadership ≤ 5; All variables ≥ 0, Equal goal weights. 

≥ 1 Constraint: Due to both the structure of the data collection tool and the calibration logic, the choices 

of the people working in the data collection enterprise can be both equal to 1 and greater than 1. Since 

the questionnaire also starts from 1, it cannot take smaller values. 

≥ 1 and ≤ 3 Constraint: Considering the selected calibration benchmarks, as stated in the literature, for 

a condition to be out of the set, the condition must be at or below the fully fuzzy point 0.5 (i.e., it 

corresponds to 3 in the study). (Ragin, 2008). 
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≥ 3 and ≤ 5 Constraint: Considering the selected calibration benchmarks, as stated in the literature, for 

a condition to be included in the set, the condition of being included in the set must be 0.5 (that is, 

equivalent to 3 in the study) value and above. (Ragin, 2008). 

 

4. Results and Discussion 

Compromise programming model solved with Lindo software.  Hypothesis 11 was accepted as 

configurations that provide both business performance and employee job satisfaction were identified. 

Compromise solution can be seen from Table 7. With Configuration 1, if it is aimed to ensure both 

business performance and employee job satisfaction, it is necessary to increase the level of formalization 

and to perform all operations with written and well-defined workflows. Instead of centralizing the 

administration, it is necessary to bring it to a decentralized structure by spreading the authority to the 

lower parts of the organization. However, employees need to be more effective and empowered in 

managerial decisions, which is more related to employee job satisfaction. Rather than multi-level and 

complex structuring of the organization vertically and horizontally, a simpler organization should be 

established and organizational complexity should be brought to the lowest level. Since Configuration 1 

operates in an external environment that is predictable, static, uncertain and the level of change is not 

rapid, its strategies also differentiate its products and services, albeit at a low level, by making the highest 

level of products and services at the lowest cost, by reducing the costs at the highest level. 

 

Table 7. Compromise solution for Configuration 1 

Variables 

𝑍1  

𝛼𝑝𝑒𝑟𝑓.

= 0,5 

𝑍2  

𝛼𝑗𝑜𝑏 𝑠𝑎𝑡𝑖𝑠.

= 0,5 

𝑍1  

𝛼𝑝𝑒𝑟𝑓.

= 0,7 

𝑍2  

𝛼𝑗𝑜𝑏 𝑠𝑎𝑡𝑖𝑠.

= 0,3 

𝑍1  

𝛼𝑝𝑒𝑟𝑓.

= 0,3 

𝑍2  

𝛼𝑗𝑜𝑏 𝑠𝑎𝑡𝑖𝑠.

= 0,7 

Formalization  5 5 5 5 5 5 
Participation in decisions 5 5 5 5 5 5 
Hierarchy of authority 1 1 1 1 1 1 
Organizational complexity 1 1 1 1 1 1 
Environmental uncertainty level 1 1 1 1 2 2 

Environmental change level 1 1 1 1 1 1 
Differentiation 2 2 3 3 1 1 
Cost leadership 5 5 5 5 5 5 

OBJECTIVES 3.144 4.456 3.229 4.342 2.883 4.654 

 D = 0.0313416 D = 0.022988 D =  0.012669 

 

5. Conclusion 

Due to resource and time constraints, the study has been limited to the Central Anatolian region, it can 

be expanded and done throughout Turkey. While examining the structure-process and strategy 

dimensions, adding technology to the model will allow finding and explanation in technology detail. 

For employee job satisfaction, analyses involving blue-collar employees can be added. In addition to 

the Miles and Snow typologies, a synthesis study can be conducted that includes all the configurations 

of Mintzberg and other strategists. In this study, the deductive (theory-based) method was chosen. In a 

sector with a wide field of activity (for example, textile) in Turkey, an inductive configuration study 

according to Turkish business practices can be carried out with cluster analysis. 
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